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We report the realization of an array of four tunnel coupled quantum dots in the single electron

regime, which is the first required step toward a scalable solid state spin qubit architecture. We

achieve an efficient tunability of the system but also find out that the conditions to realize spin

blockade readout are not as straightforwardly obtained as for double and triple quantum dot circuits.

We use a simple capacitive model of the series quadruple quantum dots circuit to investigate its

complex charge state diagrams and are able to find the most suitable configurations for future Pauli

spin blockade measurements. We then experimentally realize the corresponding charge states with a

good agreement to our model. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4875909]

Quantum dot (QD) circuits have demonstrated to be par-

ticularly good systems for studying electronic transport and

for implementing solid state qubits. They notably offer the

possibility to control the spin of confined single electrons to

realize spin qubits.1,2 These are especially attracting for

quantum information processing because of their robustness

to decoherence3,4 which should allow to implement a full

electron-spin based quantum computation scheme.5 Among

the various materials in which such QDs based spin qubits

have been demonstrated, semiconductor heterostructures are

considered candidates of choice because of the high tunabil-

ity and readout techniques they offer. Lately, several experi-

ments demonstrated the manipulation of two spin-1/2 qubits

implemented in double QD (DQD) circuits as well as the

realization of universal quantum one- and two-qubits gate

operations.6–8 An additional key feature of these semicon-

ductor QD circuits is their potential for scalability.9

Realization of a scalable architecture of semiconductor

spin qubits is one of the remaining challenge that has to be

overcome for implementing more complex algorithms. Steps

toward this direction have been taken by experimentally real-

izing triple QD (TQD) circuits10,11 or quadruple QD (QQD)

circuits formed by two capacitively coupled DQDs.12 In

these systems however, the number of implemented qubits is

still limited to one or two. A square-like configuration of tun-

nel coupled QQD device has also been demonstrated,13 in

the single electron regime already. This particular configura-

tion is however a priori less suitable for scalability than the

series configuration discussed in this Letter. Very recently, a

tunnel coupled series-QQD device has been realized and

studied in the multiple electrons regime,14 showing a good

control of the tunnel couplings and gate potentials to form

the dots. In this Letter, we show that by following the same

architecture, we can reach the single electron regime for

each QD, which is a mandatory condition for making four

spin qubits. We furthermore demonstrate an efficient tunabil-

ity of the system in this regime, with which we are able to re-

alize the proper charge state configurations for spin blockade

readout.

The scanning electron microscopy (SEM) image of the

device studied here is shown in Fig. 1(a). The quantum dots

are formed in a 91 nm deep two-dimensional electron gas

(2DEG) formed in a GaAs/AlGaAs heterostructure. The

positions of the QDs is defined by a series of gates, L, Pi, Tj,

and R, and a long back wall gate C. The plunger gates Pi

allow for controlling the ith QD (QDi) energy, while the tun-

nel gates Tj allow for controlling the tunnel coupling

between the two adjacent QDj and QDjþ1. The device is pre-

pared with a micro-magnet so as to fit future requirements

FIG. 1. (a) SEM image of the QQD device. The locations of the QDs are

indicated by dashed white circles. The ohmic contacts are shown as crossed

white boxes. Throughout this paper, the measurements are performed using

the left charge sensor, as indicated by the white arrow, defined by the gates

S1L, S1P, and S1R. Charge sensing is done by rf-reflectometry measurement.

(b) Charge stability diagram of the QQD in the plane defined by plunger

gates P1 and P4, with VP2¼�125 mV and VP3¼�10 mV. The color code is

the derivative of the rf demodulated signal with respect to VP1. The QQD

empty state (0,0,0,0) is observed in the lower left corner.a)matthieu.delbecq@riken.jp
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for forming and manipulating spin qubits.7 Two sets of three

gates, visible on top of gate C, allow for forming QDs in

multiple electrons regime for charge sensing purpose. Each

of these charge sensors can be used as radio frequency (rf)

charge sensor.15–17 Throughout this paper, we use the

rf-sensor on the left, whose resonant circuit frequency is

f¼ 203.9 MHz. All the measurements are performed at the

base temperature of around 10 mK.

The voltage applied to gate C is VC¼�450 mV, below

the pinch off voltage of the 2DEG (Vpinch-off¼�350 mV).

We can form the four QDs as indicated by white circles in

Fig. 1(a) by applying negative voltages to the other gates.

Fig. 1(b) shows the stability diagram obtained by modulating

VP1 and VP4, the voltages, respectively, applied to plunger

gates P1 and P4. The measured signal is the derivative of the

rf demodulated signal amplitude with respect to VP1, so as to

display the charge transition lines of each QD. Four different

slopes are identifiable, corresponding to the four different

QDs. The stability diagram is in accordance with the device

geometry as the slopes of each QD are directly related to the

QD distance to the modulating plunger gates. Therefore, we

can assign the charge state (N1, N2, N3, N4), with Ni the num-

ber of electrons in QDi. We find that the single electron re-

gime is already demonstrated in this stability diagram, as the

charge state (0,0,0,0) is observed for VP1 � �50 mV and

VP4 � �170 mV.

We model our QQD device as shown in Fig. 2(a). This

purely classical model is an extension of the capacitive

DQD model18 to four QDs. We consider each QDi to be

capacitively coupled to its plunger gate via Cgi, to the near-

est neighbor plunger gate via Ci61,i and to the nearest QD

via the mutual capacitance Cmi. QD1 and QD4 are also

coupled to the left and right leads via CL and CR, respec-

tively. We therefore have 15 parameters to adjust in this

model. However, thanks to the symmetry of the device pat-

tern and the slopes of the transition lines measured in the

stability diagram, we can reproduce with good agreement

the transition lines around the (1,1,1,1) region as shown in

Figs. 2(b) and 2(c) with Cgi¼Cmi¼CL¼CR¼ 10 aF and

Ci61,i¼ 1 aF for i¼ 1, 2, 3, 4. Note that we chose to only

consider first neighbor plunger gate cross-capacitive cou-

pling. This model already gives good qualitative and quan-

titative agreements with our data and as such is a good

trade-off with more complete models requiring additional

parameters.

We then need to consider the realization of spin readout.

This mandatory feature for any purpose of quantum informa-

tion manipulation is usually performed by Pauli spin block-

ade technique (PSB). It can be performed by DC

measurements of the current in the biased regime19 or by

pulse measurement techniques at high frequencies.1 In both

of these schemes, it is necessary that two neighboring QDs

have for adjacent charge states (2,0) (or (0,2)) and (1,1).

This scheme can in principle be extended to larger num-

ber of series QDs, by applying the pulsed PSB scheme to

successive DQDs of the array. In the case of a TQD circuit,

the PSB measurement would be done on the left DQD,

ð2; 0; 1Þ $ ð1; 1; 1Þ, and right DQD ð1; 0; 2Þ $ ð1; 1; 1Þ,
with the center QD being common.10 For QQDs, we are sim-

ilarly looking for PSB conditions on the left DQD,

ð2; 0; 1; 1Þ $ ð1; 1; 1; 1Þ, and right DQD, ð1; 1; 0; 2Þ
$ ð1; 1; 1; 1Þ. The boundaries of the charge state (1,1,1,1) is

defined by a transition line of each QDs. However, to meet

the conditions of PSB for one DQD, we need to have the

transition lines of the corresponding two QDs to cross and

form one corner of the (1,1,1,1) region. Figs. 2(b) and 2(c)

show that none of the required conditions for PSB are met as

neither the (2,0,1,1) nor the (1,1,0,2) charge states are adja-

cent to the (1,1,1,1) region. In this diagram, in order to

achieve the PSB condition on the left DQD, one has to push

the transition line of QD2 towards more positive VP1 so that

it crosses the second transition line of QD1 above the transi-

tion line of QD3 along VP4. Similarly, to obtain the PSB con-

dition on the right DQD, one has to push the transition line

of QD3 towards more positive VP4 so that it crosses the sec-

ond transition line of QD4 above the transition line of QD2

along VP1. Following this procedure, and with the help of the

QQD capacitive model, we find that there exists no configu-

ration in which the left and right DQDs PSB conditions can

be met on a single stability diagram defined by two plunger

gates. This fact sets a clear gap with TQD devices in the

search of a scalable architecture, as both PSB conditions can

be found on the same stability diagram for TQD. It implies

that more complex manipulations of the QQD system are

necessary to fully operate and measure the spin state of each

QDs.

Up to now, we only considered the stability diagram of

the QQD in the (VP1, VP4) plane. We however have a set of

four available plunger gates to explore the complete mani-

fold of the QQD charge states. Within this picture, each

charge state region is 4-dimensional and can be explored

along the axes VP1, VP2, VP3, and VP4. Our simple capacitive

model then reveals especially useful to explore the charge

states space along any combination of these axes.

FIG. 2. (a) Schematic of the QQD capacitive model used throughout this pa-

per to calculate the charge stability diagrams. (b) Charge stability diagram

close-up of the (1,1,1,1) region, in the plane defined by plunger gates P1 and

P4, with VP2¼�40 mV and VP3¼�180 mV. (c) Calculated transition lines

using the model of (a) and Cgi¼Cmi¼CL¼CR¼ 10 aF and Ci61,i¼ 1 aF for

i¼ 1, 2, 3, 4.
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Figs. 3(a) and 3(b) show the calculation of the stability

diagrams (where the first two electrons of each QDs are con-

sidered) in the planes (VP1, VP2) and (VP3, VP4), respectively.

The PSB conditions for each DQD is naturally found in each

respective plane. The corresponding stability diagrams meas-

urements are shown in Figs. 3(c) and 3(d). Fig. 3(a) (Fig.

3(b)) shows that we should expect the transition lines of QDs

2, 3, and 4 (1, 2, and 3) to have similar slopes, little influ-

enced by VP1 (VP4). The transition line spacing DVi between

two consecutive charge states of each QDi is also directly

related to the distance of each QDi to the driving plunger

gates,20 respectively, giving DV2 � DV3 � DV4 and

DV3 � DV2 � DV1. These features are well observed in

Figs. 3(c) and 3(d), confirming the agreement of the capaci-

tive model of Fig. 2(a) with our device. The comparison

between theory and experiment allows us to clearly identify

each QD transition line and find out the PSB conditions

ð2; 0; 1; 1Þ $ ð1; 1; 1; 1Þ in the plane (VP1, VP2) and

ð1; 1; 0; 2Þ $ ð1; 1; 1; 1Þ in the plane (VP3, VP4) as depicted

by the white arrows.

An additional advantage of this scheme is that the transi-

tion lines of the two QDs where the PSB condition is met

form a standard DQD honeycomb pattern in the correspond-

ing plunger gate voltage plane. It provides better clarity for

manipulating the left and right DQDs and allows for direct

implementation of the standard DQD PSB schemes. This

should particularly help limiting the modulation of gates

potential and tunnel coupling of the two other QDs, which

could give rise to spurious effects such as states mixing.

Ideally, one can first find the (1,1,1,1) region in the (VP1,

VP4) plane. Then, from that charge state, the charge stability

diagram is explored in the other planes. One would then

readily find the PSB conditions for each DQD with the mini-

mum number of gate operations.
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