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The entropy of an electronic system offers important insights 
into the nature of its quantum mechanical ground state. This 
is particularly valuable in cases where the state is difficult to 
identify by conventional experimental probes, such as conduc-
tance. Traditionally, entropy measurements are based on bulk 
properties, such as heat capacity, that are easily observed 
in macroscopic samples but are unmeasurably small in sys-
tems that consist of only a few particles1,2. Here, we develop 
a mesoscopic circuit to directly measure the entropy of just 
a few electrons, and demonstrate its efficacy using the well-
understood spin statistics of the first, second and third elec-
tron ground states in a GaAs quantum dot3–8. The precision of 
this technique, quantifying the entropy of a single spin-1/2 to 
within 5% of the expected value of kB ln 2, shows its poten-
tial for probing more exotic systems. For example, entangled 
states or those with non-Abelian statistics could be clearly 
distinguished by their low-temperature entropy9–13.

Our approach is analogous to the milestone of spin-to-charge 
conversion achieved over a decade ago, in which the infinitesimal 
magnetic moments of a single spin were detected by transform-
ing them into the presence or absence of an electron charge14,15. 
Following this example, we perform an entropy-to-charge conver-
sion, making use of the Maxwell relation
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that connects changes in entropy, particle number and tempera-
ture (S, N and T, respectively) to changes in the chemical potential,  
μ, a quantity that is simple to measure and control. The condition of 
fixed pressure, p, in equation (1) is met by working well below the 
Fermi temperature of the reservoir, TF ~ 100 K, where degeneracy 
pressure dominates16.

The Maxwell relation in equation (1) forms the basis of two theo-
retical proposals to measure non-Abelian exchange of Moore–Read 
quasiparticles in the ν =​ 5 / 2 state via their entropy9,10. Ref. 10 pro-
poses a strategy by which quasiparticle entropy could be deduced 
from the temperature-dependent shift of charging events on a local 
disorder potential—a thermodynamic equivalent of the measure-
ments that established the e/4 quasiparticle charge at ν =​ 5/2 (ref. 17).  
As a demonstration of the viability and the high accuracy achievable  

by this technique, we investigate a well-understood system with 
localized fermions in place of more exotic quasiparticles: a few-
electron GaAs quantum dot. The entropies of the first three electron 
states in the dot are measured by the temperature-dependent charg-
ing scheme laid out in ref. 10. Applying the language of quantum 
dots to equation (1), the entropy difference between the N −​ 1 and 
N electron ground states (Δ​SN − 1 → N for Δ​N =​ 1) is measured via the 
shift with temperature in the electrochemical potential, μN, needed 
to add the Nth electron to the dot.

The measurement relies on the mesoscopic circuit shown in 
Fig. 1a, using electrostatic gates to realize an electron reservoir in 
thermal and diffusive equilibrium with a few-electron quantum dot 
coupled to its right side. The occupation of the dot is tuned with the 
plunger gate voltage, Vp, and measured using an adjacent quantum 
point contact as a charge sensor18–20. Applying more positive Vp low-
ers μN, bringing the Nth electron into the dot when μN drops below 
the Fermi level of the reservoir, EF. The reservoir temperature, T,  
can be increased above the GaAs substrate temperature by Joule 
heating from current, Iheat, driven through a quantum point contact 
on the left side. Charge transitions on the dot appear as steps in the 
charge sensor conductance, Gsens(Vp), thermally broadened by the 
reservoir temperature (Fig. 1b,c). The gate voltage corresponding 
to the midpoint of the transition, Vmid, marks the electrochemical 
potential at which the probabilities of finding N −​ 1 and N electrons 
on the dot are equal.

When μN shifts with temperature, Vmid also shifts; it is the shift in 
Vmid with temperature that forms the basis of our experiment (Fig. 1c).  
In practice, charge noise limits the accuracy to which Vmid can be 
measured. To overcome this, the measurement is done with a lock-
in amplifier, oscillating the temperature using an a.c. Iheat and mea-
suring resultant oscillations in Gsens, which we label δ​Gsens. As seen 
in the insets of Fig. 1b,c, the lineshape of δ​Gsens is perfectly antisym-
metric when ∂S/∂N =​ 0, but asymmetric when ∂S/∂N ≠​ 0.

The temperature-induced shift in the dot chemical potential 
with respect to the reservoir EF can also be understood in terms 
of detailed balance. At Vmid, where probabilities for N and N −​ 1 
electrons on the dot are equal, the tunnel rates Γin =​ ΓN − 1 → N and 
Γout =​ ΓN → N − 1 must also be equal. These rates depend on the num-
ber of available states in the tunnelling process, and therefore on 
the degeneracies, dN − 1 and dN, of the N −​ 1 and N ground states21,22. 
The condition Γin =​ Γout leads to a simple relationship between  
degeneracy and the thermally broadened Fermi function, f(μN −​ EF, T):  
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dN − 1/dN =​ f/(1 −​ f). Using the Boltzmann entropy, SN =​ kB ln dN, this 
relationship becomes Δ​SN − 1 → N =​ (μN −​ EF)/T, clearly demonstrating 
the connection between entropy, temperature and the shift in μN at 
Vmid. Previous experiments have explored the relationship between 
tunnel rates and degeneracy using time-resolved transport spec-
troscopy and by coupling quantum dots to atomic force cantilever 
oscillations8,23–25. The approach presented here is a thermodynamic 
analogue, and extends entropy measurements to a wider set of 
applications where tunnelling processes may not be observable in 
real time.

The dot was tuned such that the source was weakly tunnel-cou-
pled to the reservoir with the drain closed. The conductance of the 
charge sensor was tuned to Gsens ~ e2/h, where it was most sensitive 
to charge on the dot. The addition of the first electron to the dot 
was marked by a decrease in Gsens that is consistent with a thermally 
broadened two-level transition (Fig. 2a):
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arm, γ1 reflects the cross-capacitance between the charge sensor and 
plunger gate, and G2 is an offset. Figure 2a shows two such transition 
curves with thermal broadening set by Iheat. For Iheat =​ 0, Θ followed 

TMC down to approximately 100 mK (Fig. 2b), validating the approx-
imation of thermal broadening used throughout this experiment.

The data in Fig. 2c, and the corresponding fits, illustrate a mea-
surement of Δ​S0→1 across the 0 →​ 1 electron transition. The lock-in 
measurement of δ​Gsens, due to temperature oscillations δ​T, yields 
the characteristic peak–dip structure seen in Fig. 2c. The expected 
lineshape of such a curve is δ​Gsens =​  δ∂
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T
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equation (3). This lineshape depends explicitly on Δ​S, recognizing 
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As expected from Fig. 1b,c, δ​Gsens(Vp) is antisymmetric around Vmid 
for Δ​S =​ 0, and asymmetric for Δ​S ≠​ 0. A fit of the data in Fig. 2c to 
equation (3) yields Δ​S0 → 1 =​ (1.02 ±​ 0.03)kB ln 2, closely matching the 
expected Δ​S0→1 =​ S1 −​ S0 =​ kB ln 2 for transitions between an empty 
dot with zero entropy (S0 =​ 0) and the two-fold degenerate one-elec-
tron state (d1 =​ 2) with entropy S1 =​ kB ln 2.

It is important to note that Δ​S is extracted from fits to equa-
tion (3) based solely on the asymmetry of the lineshape, with no 
calibration of measurement parameters (such as δ​T or the lever 
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Fig. 1 | Measurement protocol. a, A scanning electron micrograph of 
a device similar to the one measured. Electrostatic gates (gold) define 
the circuit in a two-dimensional electron gas (2DEG), with grey gates 
grounded. The squares indicate ohmic contacts to the 2DEG. The 
temperature of the electron reservoir in the middle (red) is oscillated 
using a.c. current, Iheat, at frequency fheat through the quantum point 
contact (QPC) on the left. A portion of the 5-μ​m-wide reservoir has 
been removed here for clarity. The occupation of the quantum dot, 
tunnel coupled to the right side of the reservoir, is tuned by Vp and 
monitored by Isens through the charge sensor QPC. Isens is split into d.c. 
and a.c. components, the latter being measured by a lock-in amplifier 
at 2fheat. b,c, Simulated d.c. charge sensor signal, Gsens, for a transition 
from N −​ 1 →​ N electrons at two temperatures (TRed >​ TBlue), showing two 
possible cases for ∂

∂
S
N

. The insets show the corresponding difference, δ​
Gsens, between hot and cold curves.
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Fig. 2 | Entropy measurement for a single spin-1 / 2. a, Charge sensor 
data for N =​ 0 →​ 1 at two temperatures set by d.c. current through the 
QPC heater. b, The transition width, Θ, was linear in TMC above 100 mK, 
for Iheat =​ 0. The lever arm α is calculated by fitting a straight line to this 
region. c, Lock-in measurement of δ​Gsens with δ​T =​ 32 mK, determined from 
the calibration in d. Fits to δ​Gsens (equation (3)) are shown with Δ​S/kB 
as a free parameter (solid) and fixed at Δ​S/kB =​ 0 (dashed). d, Θ grows 
with d.c. current through the QPC heater. A fit to T2 =​  +aT bI RMC

2
heat
2

QPC 
is used to convert between Iheat and δ​T, where TMC is the mixing chamber 
temperature30. e, Entropy measurements were independent of the 
magnitude of Iheat oscillations over a large range. The top axis indicates the 
corresponding magnitude of δ​T, while the right axis shows the entropy 
signal converted to a gate voltage shift per unit temperature. The error bars 
show 95% confidence intervals calculated with the bootstrap method.
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arm α) required. We can, however, estimate α and δ​T by determin-
ing Θ from fits to equation (2) for varying substrate temperature 
(Fig. 2b) and Iheat (Fig. 2d). Measurements of Δ​S remained constant 
over a broad range of δ​T (Fig. 2e), as expected for temperatures low 
enough not to excite orbital degrees of freedom on the dot.

Confirmation that the measured Δ​S derives from spin degen-
eracy is seen through its evolution with in-plane magnetic field, B||.  
Figure 3a compares Δ​S(B||) for the 0 →​ 1 and 2 →​ 3 transitions, both 
of which correspond to transitions from total spin zero to total spin 
one-half. The entropies of the one- and three-electron states go to 
zero as Zeeman splitting lifts the spin degeneracy, following the 
Gibbs entropy for a two-level system:
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are the probabilities for the unpaired electron to be in the spin-up  
or spin-down states at a given field and temperature. Fits to  
equation (4), with the ratio g/T and an added scaling Δ​S(B =​ 0) 
as free parameters, give Δ​S0 → 1(B =​ 0) =​ (0.94 ±​ 0.03)kB ln 2 and  

Δ​S2→3(B =​ 0) =​ (0.98 ±​ 0.02)kB ln 2 (Fig. 3), and reflect the collapse to 
zero at high field where spin degeneracy is broken. This collapse 
can also be seen qualitatively, in the crossover from asymmetric to 
antisymmetric lineshapes of δ​Gsens(Vp) (Fig. 3b,c). Estimating an 
average T for each data set using the calibration in Fig. 2d yields 
∣ ∣g  =​ 0.48 ±​ 0.02 and ∣ ∣g  =​ 0.44 ±​ 0.01 for the 0 →​ 1 and 2 →​ 3 transi-
tions, respectively. The errors in the g-factor measurement are likely 
to be due to the difficulty of estimating temperature oscillations. 
Still, the g-factors are consistent with reported values26–28 and the 
value measured separately in Fig. 3e using bias spectroscopy.

The 1 →​ 2 transition can be understood as the inverse of the 0 →​ 1 
transition for B|| <​ 5 T, comparing Figs. 3a and 4a. For relatively low 
fields, the two-electron ground state remains a spin singlet with 
zero entropy, while the one-electron entropy goes from kB ln 2 to 0 
due to Zeeman splitting. At higher fields, the one-electron ground 
state remains non-degenerate while the two-electron ground state 
gains a two-fold degeneracy when the singlet S∣ ⟩  and triplet T∣ ⟩+  
states cross. This singlet-triplet crossing is seen in bias spectroscopy 
data (Fig. 4f) at 8.4 T, and in the appearance of a peak in Δ​S1 → 2 at 
9 T (Fig. 4a). The discrepancy in field required to drive the singlet–
triplet degeneracy in Fig. 4a,f is attributed to a change in shape of 
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Fig. 3 | Magnetic field dependence. a, Changes in entropy for N =​ 0 →​ 1 
and 2 →​ 3 transitions, overlaid to highlight similar behaviours. Each data 
point corresponds to a single δ​Gsens(Vp) fit; multiple scans are carried out at 
various in-plane magnetic fields. b,c, Characteristic δ​Gsens traces from which 
the data in a were extracted. The two data points corresponding to b,c are 
shown as large markers in a. d, Bias spectroscopy data for the N =​ 0 →​ 1 
transition. The dashed line at VSD =​ 700 μ​eV shows where data in e are 
taken. e, Fixed-bias data showing fits to Zeeman splitting of the ground 
state (dashed lines) from which ∣ ∣g  =​ 0.42 ±​ 0.01 is extracted.
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Fig. 4 | Entropic signature of a singlet–triplet crossing. a, Change in 
entropy, Δ​S1→2, extracted from δ​Gsens fits at varying in-plane field. The 
dashed line shows a fit to equation (4), allowing for an offset from Δ​S =​ 0 
away from the degenerate points to compensate for nonlinearities in the 
charge sensor. The values stated for Δ​S are with respect to the vertical 
offset apparent in the data. b–d, Characteristic δ​Gsens traces from which the 
data in a were extracted. These data points are shown as large markers in 
a. e, Bias spectroscopy data for the N =​ 1 →​ 2 transition. Transitions to the 
two-electron triplet state correspond to the lines appearing at VSD =​ ±​320 μ​eV.  
The dashed line at VSD =​ 1,250 μ​eV shows where the data in f are taken. f, 
Fixed-bias data in the in-plane field. The triplet level is split into T∣ ⟩+  and 
T∣ ⟩0  levels with a third T∣ ⟩−  level not visible here. At 8.4 T, T∣ ⟩+  becomes 

degenerate with S∣ ⟩ . ∣ ∣g  =​ 0.40 ±​ 0.04 is determined using T∣ ⟩0  and T∣ ⟩+  
fits (dashed).
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the dot potential, caused by altering the confinement gate voltages, 
when transitioning from one to two open tunnel barriers.

The field-dependent entropy measurement for the 1 →​ 2 tran-
sition can again be fitted using equation (4), with probabilities in 
equation (5) for the one-electron states and
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for the two-electron states, where STΔ  is the singlet–triplet splitting 
at zero field. From the fit, we find Δ​S1→2 at the two-fold degenerate 
points, B =​ 0 and 9 T, are −​(1.01 ±​ 0.03)kB ln 2 and (1.04 ±​ 0.04)kB  
ln 2, respectively. The extracted g-factor, ∣ ∣g  =​ 0.47 ±​ 0.02, from the 
peak at B =​ 0 is consistent with the 0 →​ 1 transition. Around the 
high-field singlet–triplet degeneracy, we find ∣ ∣g  =​ 0.69 ±​ 0.04, an 
unexpectedly high g-factor that is explained by a shift of the T∣ ⟩0  
state with magnetic field, as seen in Fig. 4f and previous work29.

We conclude with a few notes to encourage the application of 
this entropy measurement protocol to other mesoscopic systems. 
The crucial ingredients in achieving the high accuracy reported 
here were: the ability to oscillate temperature rapidly enough to 
avoid 1/f noise; the ability to measure charging transitions with-
out perturbing the localized states; and the fact that the charging 
transitions were thermally broadened. The last criterion enabled 
the entropy determination purely by asymmetry, without the 
need to know δ​T or other measurement parameters accurately, 
yielding an uncertainty of less than 5%. With this level of preci-
sion, it should be possible, for example, to distinguish the k ln 21

2 B  
entropy of a non-Abelian Majorana bound state from the kB ln 2 
entropy of an Andreev bound state at an accidental degeneracy11,12.  
Similarly, the S =​  k ln 21

2 B  two-channel Kondo state could be 
clearly distinguished from fully screened (S =​ 0) or unscreened 
(S =​ kB ln 2) spin states13.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41567-018-0250-5.
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Methods
The device was built on a AlGaAs/GaAs heterostructure, hosting a 2DEG with 
density and mobility at 300 mK of 2.42 ×​ 1011 cm−2 and 2.56 ×​ 106 cm2/(Vs) 
respectively, determined in a separate measurement. Mesas and NiAuGe ohmic 
contacts to the 2DEG were defined by standard photolithography techniques, 
followed by atomic layer deposition of 10 nm HfO2 to improve the gating stability 
in the device. Fine gate structures, shown in Fig. 1a, were defined by electron beam 
lithography and deposition of 3 nm Ti/18 nm Au.

The measurement was carried out in a dilution refrigerator with a two-axis 
magnet. The 2DEG was aligned parallel to the main axis with the second axis 
used to compensate for sample misalignment. In practice, out-of-plane fields up 
to 100 mT showed no effect on our data. A retuning of the quantum dot gates 
was necessary to capture the bias spectroscopy data in Figs. 3d,e and 4e,f. The 
rightmost gate (Fig. 1a) on the quantum dot was used to tune between the one- and 
two-lead configurations, for the entropy and bias spectroscopy measurements, 
respectively. This tuning had a significant effect on the shape of the potential 
well, accounting for variations in parameters such as g and Δ​ST between the two 
measurement configurations. Charge sensor conductance was measured using a 
d.c. voltage bias of 200–350 μ​V; we find that Joule heating through the sensor does 

not affect our reservoir temperatures up to Vsens ~ 500 μ​V. The d.c. current (Isens) 
was measured using an analogue–digital convertor while the a.c. current (δ​Isens) 
was measured using a lock-in amplifier. The d.c. conductance reported here is 
Gsens =​ Isens/Vsens while the oscillations are defined as δ​Gsens =​ (δ​Isens)/Vsens.

The temperature of the reservoir was raised above the substrate temperature 
using Iheat at a.c. or d.c., with the QPC heater set by gate voltages to 20 kΩ​. Applying 
a.c. current at fheat =​ 48.7 Hz yields an oscillating Joule power, Pheat =​ I Rheat

2
QPC. To 

leading order, this gives oscillations in temperature, and therefore δ​Gsens, at 2fheat. 
These are captured by the lock-in amplifier at the second harmonic of Iheat. Except 
where noted, measurements of Δ​S were made at δ​T ~ 50 mK, although the error 
bars in Fig. 2 demonstrate that the measurements would have been just as accurate 
with δ​T set to 30 mK.

Code availability. The github repository (https://github.com/nikhartman/spin_
entropy) contains all code necessary to complete the analysis and create each of the 
figures in this manuscript.

Data availability. Data generated for, and analysed in, this study are available at 
https://github.com/nikhartman/spin_entropy.
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