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Integer and fractional quantum Hall states are archetypal topologi-
cal phases of a two-dimensional electron system (2DES) subjected 
to a strong perpendicular magnetic field1. Electronic Fabry–Perot 

interferometry has been proposed as a means to probe the prop-
erties of integer and fractional quantum Hall edge states2–5; most 
intriguingly, interferometry may be used to directly observe any-
onic braiding statistics6 of fractional quantum Hall quasiparticles. 
Interference visibility in real devices is limited by finite phase coher-
ence, a particularly acute problem in the fractional quantum Hall 
regime. Visibility may be improved by decreasing the size of the 
interferometer so that the path travelled by interfering excitations is 
shorter. However, attempts to measure interference in small devices 
have yielded results inconsistent with simple Aharonov–Bohm 
interference; specifically, the magnetic field oscillation period is 
found to change with filling factor, and constant phase lines in the 
gate voltage–magnetic field plane have positive slope rather than 
the expected negative slope7–10. This behaviour was attributed to 
Coulomb charging effects11,12, which cause the area of the interfer-
ometer to change as the magnetic field is varied. This ‘Coulomb-
dominated’ behaviour masks the Aharonov–Bohm phase and 
makes braiding statistics unobservable12. The effects of intermediate 
Coulomb coupling were also investigated theoretically13. The chal-
lenge for measuring robust interference and observing fractional 
braiding statistics is to create a device small enough to maintain 
phase coherence, while reducing Coulomb effects so that the device 
may operate in the Aharonov–Bohm regime. We report fabrication 
and operation of an interferometer that overcomes these challenges.

We grew the GaAs/AlGaAs heterostructure by molecular beam 
epitaxy14,15 and it is shown in Fig. 1a. While typical structures uti-
lize a single GaAs quantum well in which the 2DES resides, our 
structure contains three GaAs wells: a primary quantum well 30 nm 
wide and two additional 12 nm wells located on either side of the 
primary well separated by 25 nm Al0.36Ga0.64As spacers. The 2DES 
under study is located inside the primary GaAs quantum well, while 
the ancillary wells screen Coulomb effects so that the interferom-
eter may operate in the Aharonov–Bohm regime11,12. The structure 

is modulation doped with silicon above the top screening well and 
below the bottom screening well. In Fig. 1b we show the position 
of the Γ-band edge (red) and electron density (blue) calculated by 
the self-consistent Schrodinger–Poisson method16; the confinement 
energy in each screening well is tuned to match the experimentally 
measured densities. This structure is designed to have significantly 
higher density in the screening wells than in the primary well to 
facilitate strong screening.

In Fig. 2 we show a scanning electron micrograph of the inter-
ferometer gates. The device consists of two quantum point contacts 
(QPCs) that form narrow constrictions and a pair of side gates that 
define the interference path. The gates shown in yellow are nega-
tively biased to deplete electrons from the quantum well and define 
the interference path; the central top gate (green) is grounded and 
does not alter the 2DES density.

Interferometer operation requires transport measurements 
through the primary quantum well unobscured by parallel conduc-
tion through the screening wells. Our device includes narrow gates 
on the top surface and on the back side of the chip that partially 
overlay the arms connecting each Ohmic contact to the mesa; this is 
shown schematically in Fig. 1c. The surface gates over the Ohmics 
are negatively biased at −0.29 V; this bias is sufficient to deplete the  
electrons from the top screening well without depleting either the 
primary quantum well or the bottom screening well. Similarly, 
the back-side gate over the Ohmics is biased at −150 V to deplete  
the bottom screening well, but not the primary quantum well. This 
eliminates electrical conduction through both screening wells so 
that only the primary quantum well is probed in measurements. As 
these gates are well separated from the gates that define the meso-
scopic interference path, the screening wells are still populated in 
the interferometer and thus available to screen. In Fig. 3a we show 
the evolution of the Hall resistance Rxy with current allowed to flow 
through all three wells (black trace), with the top screening well dis-
connected from the contacts (blue trace), and with both screening 
wells disconnected such that current passes only through the pri-
mary quantum well (red trace); in the final case, Rxy exhibits a much 
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steeper slope and shows clear quantum Hall plateaus and concomi-
tant zeros in longitudinal resistance (not shown), demonstrating 
that parallel conduction through the screening wells has been elimi-
nated. This selective depletion technique was pioneered to isolate 
transport in bulk bilayer systems17. Here we have demonstrated that 
the technique has utility for mesoscale electronic devices as well.

The presence of the screening wells acts to reduce the Coulomb 
charging energy, characterized by measuring Coulomb blockade 
through the device at zero magnetic field18. Coulomb blockade dia-
monds (obtained by measuring the differential conductance ∂

∂
I
V

 ver-
sus side-gate voltage Vgate and source–drain voltage VSD), shown in 
Fig. 2b, yield a charging energy ≈ μ17 eVe

C2

2
. The Coulomb block-

ade charging energy characterizes the incremental increase of elec-
trostatic energy when an electron is added in the presence of all 
the other electrons localized in the interior of the device; therefore, 
this energy may be loosely identified with the bulk–edge coupling 
constant KIL in ref. 12, which determines whether the device is in 
the Coulomb-dominated or Aharonov–Bohm regime. A similarly 
sized device without screening wells would have charging energy 

~ ≈ μ
ϵ

200 eVe
C

e
r2

2 2
 (where r is the radius of the dot), indicating that 

the screening wells are very effective at reducing Coulomb effects 
in the interferometer (Coulomb blockade from a device without 
screening wells is shown in Supplementary Fig. 1). It is important to 
note that although Coulomb effects are screened on the scale of the 
mesoscopic device, the presence of several fractional quantum Hall 
plateaus visible in Fig. 3a indicates that the Coulomb interaction on 
the microscopic length scales relevant for the fractional quantum 
Hall effect is not significantly reduced.

ν = 1 interference
Next, we operate the device at filling factor ν = 1 in the integer quan-
tum Hall regime, where the bulk of the 2DES is insulating and cur-
rent is carried by a chiral edge state. The interference path is shown 
schematically in Fig. 4a. Electrons incident from the source contact 
are backscattered by the two QPCs to the opposite edge, and the two 
backscattered paths interfere; this is shown schematically in Fig. 4a. 
The quantum mechanical phase difference between the two inter-
fering paths is given by the Aharonov–Bohm phase: θ = π

Φ
2 A BI

0
, where 

AI is the area of the interference path, B is the magnetic field and 
Φ ≡ h

e0  is the magnetic flux quantum. The device may be operated 
by changing the magnetic field B, or by changing the voltage on the 
side gates to change AI.
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Fig. 1 | Heterostructure design and device layout. a, Layer stack of the GaAs/AlGaAs heterostructure along the growth direction, showing the positions of 
the GaAs quantum well and screening wells (blue), AlGaAs spacers (green) and AlAs barriers (red). b, Conduction band edge (red) and electron density 
(blue) versus growth direction (z axis) calculated using a self-consistent Schrodinger–Poisson method. The sheet density in each well is indicated.  
c, Schematic showing the layout of the mesa (blue), Ohmic contacts (green), surface gates used to isolate the top screening well from the contacts 
(orange) and the backgate used to isolate the contacts from the bottom screening well (red). The surface gates used to define the interference path are 
shown in yellow. Additionally, there is a global backgate underneath the mesa (red). A four-terminal measurement circuit is indicated in which current is 
injected into the Hall bar and the perpendicular Hall voltage is measured; when the interferometer gates are biased to define the interference path, the 
measured resistance is referred to as the diagonal resistance, RD.

500 nm

Fig. 2 | Scanning electron micrograph of the interferometer. False-colour 
scanning electron micrograph of the interferometer, located in the centre 
of the Hall bar shown schematically in Fig. 1c. The device consists of 
two QPCs to backscatter current and a pair of side gates to define the 
interference path (yellow); when these gates are negatively biased, the 
2DES underneath is depleted, which defines the interference path. In the 
measurements, the gate voltage Vgate applied to both side gates is varied to 
change the area of the interference path. An additional gate over the top of 
the area of the device (green) is grounded for these experiments.
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At ν = 1 the interferometer exhibits strong conductance oscilla-
tions, probed by measuring the diagonal resistance RD across the 
device. RD as a function of gate voltage and magnetic field is plotted 
in Fig. 4b; the lines of constant phase exhibit negative slope, consis-
tent with the device being in the Aharonov–Bohm regime despite its 
small size. The magnetic field oscillation period ΔB = 5.7 mT, which 
gives an area of the interference path AI = ΔB/Φ0 ≈ 0.73 μm2. This 
area is smaller than the lithographic area of the device, indicating 
that the 2DES is depleted in a region approximately 180 nm wide 
around the gates; this agrees with simulations of the 2DES density 
at the edge of the gate (see Supplementary Fig. 3). Additionally, we 
find that ΔB does not vary significantly with filling factor in the 
range 1 ≤ ν ≤ 12, consistent with Aharonov–Bohm behaviour and 
in contrast to the Coulomb-dominated regime in which ΔB is pro-
portional to 1/ν (refs. 7,10–12). Previous Fabry–Perot interferometry 
experiments utilizing conventional heterostructures have required 
a device area of 20 μm2 for Coulomb effects to be small enough for  

the device to be in the Aharonov–Bohm regime7,10; unambiguous 
observation of the Aharonov–Bohm regime in a much smaller device 
demonstrates the effectiveness of the device design employed here.

For weak backscattering by symmetrically tuned 
QPCs, conductance oscillations due to interference obey  







η∕ = − + π

Φ( )G G r1 2 1 cos 2 AB
0

2
0 , where =G

R
1

D
 is the conductance  

across the device, ≡G e
h0
2  is the conductance quantum, r2 is the reflec-

tion probability of the QPCs and η is the coherence factor. We  
characterize coherence of the interference at ν = 1 by measuring 
conductance oscillations at different cryostat temperatures, plotted 
in Fig. 4c; we normalize by dividing the conductance oscillations 
δG by the reflection amplitude r2, with each QPC tuned to approxi-
mately 97% transmission and 3% reflection. The coherence factor η 
(defined as the amplitude of δG

G r2 0
2
) decays with temperature following 

an approximately exponential trend, shown in Fig. 4d, with a charac-
teristic temperature T0 = 206 mK. For comparison, in measurements 
of a Fabry–Perot interferometer in ref. 19, T0 was found to be less 
than 20 mK for magnetic fields exceeding 1.5 T; in measurements of 
Mach–Zehnder interferometers the largest T0 measured was 40 mK 
(ref. 20), with larger devices exhibiting smaller T0. The significantly 
larger T0 observed in our experiment indicates that the smaller size 
achieved in our device is beneficial to achieving quantum coherence.

Edge-mode velocity
When the device is operated at a lower magnetic field (higher fill-
ing factor), multiple integer edge modes are present. In our device 
it is possible to selectively interfere a particular edge mode by tun-
ing the QPC voltages to partially backscatter that edge, while fully 
transmitting the outer edges so that only the partially backscattered 
edge interferes; this is shown schematically in Fig. 5a for the case 
of bulk filling factor νbulk = 3, and a corresponding trace of the QPC 
conductance versus gate voltage is shown in Fig. 5b with the operat-
ing points corresponding to the selective interference of each edge 
mode indicated with coloured circles.

The interference phase may be additionally modulated by chang-
ing the energy ϵ of injected electrons, which changes the wavevec-
tor k. This introduces a phase shift θ ϵδ = δ =

ϵ
ϵ∂

∂
δ

ℏ
Lk L

vedge

, where L is  

the path length around the interference loop and ≡ ϵ
ℏ

∂
∂

v
kedge

1
 is the  

velocity of the edge mode2. ϵ may be modulated by applying a  
finite source–drain bias VSD across the device; this results in oscil-
lations in differential conductance as a function of both VSD and  

flux: 






δ ∝ π

Φ ℏ( )G cos 2 cosAB eV L
v20

SD

edge  (ref. 21). This results in nodes in  
a ‘chequerboard’ pattern when δG is measured in the VSD − Vgate 
plane (plotted at νbulk = 1 in Fig. 5c and for the inner N = 1 mode at 
νbulk = 3 in Fig. 5d), with nodes in the interference pattern occurring  
at = ±

πℏ
V

v

eLSD
edge. The velocity may thus be extracted: =

π
Δ

ℏ
v eL V

edge 2
SD  

(refs. 21,22), where ΔVSD is the spacing between nodes, and we  
estimate L from the interference area, ≈L A4 I . The extracted 
velocity probably represents the average velocity of the edge mode 
in the interferometer since there may be local variations in the con-
fining potential and thus velocity.

In ref. 21 this method was used to measure edge velocity versus 
filling factor, but without controlling which edge mode was being 
interfered; in ref. 22 edge velocity for only the N = 0 Landau level was 
reported (where N = 0, 1, 2… is the Landau level index). In Fig. 5e 
we plot the edge-state velocity for the N = 0, N = 1 and N = 2 Landau 
level edge modes versus bulk filling factor νbulk. The inner, higher-
index Landau levels generally have lower velocity and correspond-
ingly lower coherence. At magnetic fields below approximately 1.2 T 
(νbulk = 4), the QPCs show spin-degenerate conductance plateaus,  
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Fig. 3 | Bulk magnetotransport and Coulomb blockade. a, Bulk Hall 
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Supplementary Fig. 2. b, Coulomb blockade measurement at zero magnetic 
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diamonds with charging energy ≈ μ17 eVe
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even though the bulk transport exhibits spin-split quantum Hall 
states down to 0.2 T. This suggests that although distinct edge states 
exist, below 1.2 T they are too close to one another to be inter-
fered independently; therefore, at filling factors vbulk > 4 we show a 
single velocity measurement for each Landau level, while at lower 
fillings we show both spins when resolved. We also mention that 
we observe the same period-halving phenomenon in our device 
that was reported in previous interferometry experiments23–25  
(see Supplementary Section 2 and Supplementary Fig. 4).

Much of the magnetic field dependence in Fig. 5e can be under-
stood from the fact that edge currents in the quantum Hall regime 
are generated by Hall drift: = ×v

B
E B

Hall 2 , where E is the in-plane 
electric field at the edge due to the confining potential and B is  
the perpendicular magnetic field. This implies that the edge veloc-
ity should increase with decreasing magnetic field (increasing filling 
factor), and this is indeed the predominant trend observed at filling 
factors 2 < νbulk < 9. On the other hand, it must also be considered 
that the electric field experienced by each edge state also depends on 
both magnetic field and Landau level index. We see in Fig. 5e that the 
outer, lower-index Landau levels generally have higher edge velocity 
than the inner, higher-index ones. This behaviour can be understood 
from the works of Chklovskii et al.26,27, who found that the confining 
potential is steepest at the outer edge, resulting in a higher electric 
field and thus higher velocity for the outer Landau level edge modes 
and a smaller electric field and lower velocity for the inner ones.

The results of numerical simulations of edge transport in the 
integer quantum Hall regime for the heterostructure used in these 
experiments are plotted in Fig. 5f; see Supplementary Section 3 
and ref. 16 for an in-depth review. In these simulations, the spatially 
varying in-plane electric field is self-consistently evaluated for the 
Landau level density of states, considering the electrostatic effects 
of the heterostructure, doping, surface states and gates. We obtain 
the velocity by solving quantum transport (non-equilibrium Green’s 
function) equations at the Fermi level.

The simulations show good qualitative and quantitative agree-
ment with the experimental results over the range of filling factor 
2 < νbulk < 10. At lower filling νbulk < 2, the edge velocity exhibits non-
monotonic behaviour. This behaviour may be due to the impact of 
electron–electron interactions, which become increasingly impor-
tant at high magnetic field. Non-monotonic behaviour at low filling 
was also reported in ref. 22. Our simulations employ a mean-field 
Hartree approximation that does not capture many-body effects.

Additionally, the edge velocities also exhibit non-monotonic 
behaviour at high filling νbulk > 10. A possible explanation for this is 
that at low fields when the magnetic length becomes comparable to 
the length scale of the confining potential at the edge, charge trans-
port may occur via skipping orbits, resulting in different behaviour 
than observed at higher fields21,28. It is reasonable for this to occur 
at νbulk = 10; here the magnetic length is approximately 39 nm, and 
simulations indicate that the length scale of the confining potential 
is approximately 40 nm (see Supplementary Fig. 3). This effect is not 
captured in the simulations as the magnetic length approaches the 
Debye length. An alternative possibility is that at high filling where 
the cyclotron gap is smaller, there may be partial equilibration 
between the edge modes facilitated by the applied VSD, which would 
make our assumption of interfering a single edge mode invalid.

Fractional quantum Hall regime
We turn now to results in the fractional quantum Hall regime. In 
previous experiments with small Fabry–Perot devices Coulomb-
dominated or Coulomb blockade oscillations have been observed 
in fractional states10,29–31. Willet et al.32,33 reported oscillations at 
ν = 5/2 consistent with Aharonov–Bohm interference of charge e/4 
and e/2 excitations. However, oscillations with negatively sloped 
lines of constant phase in the gate voltage–magnetic field plane  
(a distinctive sign of Aharonov–Bohm regime interference) have not 
been previously reported. Edge modes in the fractional quantum 
Hall regime are predicted to have remarkably different properties 
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from those in the integer states; in particular, the current-carrying 
quasiparticles may carry fractional charge. In the fractional case, the 
Aharonov–Bohm interference phase is modified12:

θ
Φ

= π e
e

A B
2 (1)

* I

0

As long as the QPCs are not pinched off, the edge modes and 
the electrons forming the fractional quantum Hall condensate 
are not localized within the interferometer, so the area AI should 
change continuously as the gate voltage is varied. Equation (1) indi-
cates that quasiparticle charge may be extracted from gate-voltage  

oscillation periods according to the relationship = Φ

Δ ∂
∂

e
e B V

*
A

V

0

gate
I

gate
, where  

ΔVgate is the gate-voltage oscillation period and 
∂

∂
A

V
I

gate
 is the lever  

arm relating change in gate voltage to the change in interference  

path area. 
∂

∂
A

V
I

gate  may be determined from the gate-voltage period at  
integer states, where the interfering charge is simply e; a linear fit  

of ΔVgate versus 1/B yields = . ×∂
∂

− −1 8 10 m VA
V

13 2 1I

gate  (gate and  
magnetic field periods are shown in Supplementary Fig. 5 and dis-
cussed in Supplementary Section 4).

In both the Laughlin34 and composite fermion1,35 theories, the 
ν = 1/3 fractional quantum Hall effect state is predicted to sup-
port quasiparticles with charge e* = e/3. At ν = 1/3 (B = 13 T), we 
observe conductance oscillations as a function of gate voltage and 
magnetic field similar to those at integer states; the oscillations have  

gate-voltage period ΔVgate = 6.1 mV; this yields an interfering  
quasiparticle charge = = .Φ

Δ ∂
∂

e e e0 29*
B V A

V

0

gate
I

gate

, in good agreement  

with the theoretical predictions. The oscillations at ν = 1/3 are  
plotted in Fig. 6a. This supports previous experimental results uti-
lizing shot noise36, resonant tunnelling37,38 and Coulomb blockade29. 
We mention that interference at νbulk = 1/3 was found to be reproduc-
ible using a range of different gate voltages as well as after thermally 
cycling the device to room temperature (see Supplementary Section 5  
and Supplementary Fig. 6). QPC conductance at fractional states is 
shown in Supplementary Fig. 7.

Next we discuss the ν = 2/3 fractional quantum Hall effect state, 
which is the hole-conjugate state to ν = 1/3 (ref. 39). Several edge 
structures have been proposed for the ν = 2/3 state. Motivated by a 
picture in which the ν = 2/3 consists of a ν = 1/3 hole state imposed 
on a ν = 1 background, MacDonald proposed that the ν = 2/3 edge 
should consist of an inner edge mode of charge e* = −e/3 and an 
outer edge with e* = e (ref. 40). Chang41 and Beenakker42 constructed 
models consisting of two e* = e/3 edge modes; a later work indi-
cated that a transition from the MacDonald edge structure to the  
Chang–Beenakker edge structure should occur as the confining 
potential is tuned from sharp confinement to soft confinement43. 
Yet another edge model was proposed by Kane et al. in which the 
presence of disorder leads to a single e* = 2e/3 charged edge mode 
and a counter-propagating neutral mode44.

We measure conductance oscillations at ν = 2/3 (B = 6.8 T) 
with ΔVgate = 3.7 mV, yielding a quasiparticle charge 

= = .Φ

Δ ∂
∂

e e e0 93*
B V A

V

0

gate
I

gate
, which suggests interference of an integrally  
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Fig. 5 | Edge-mode velocity measurements. a, Schematic showing an interference path with multiple edge states in which the outermost mode is fully 
transmitted, the innermost mode is fully backscattered by both QPCs and the middle mode is partially transmitted by both QPCs; in this configuration 
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charged edge mode. The oscillations at ν = 2/3 are plotted in Fig. 6b. 
These oscillations have notably lower amplitude than those at both 
integer states and at ν = 1/3 (see Supplementary Section 6 for a dis-
cussion of amplitudes). The presence of an integrally charged mode 
suggests that the Macdonald edge structure holds in our device. 
However, we do not find evidence for interference of a fraction-
ally charged e* = −e/3 mode at ν = 2/3, even if the QPC bias is tuned 
to reduce backscattering. A possible explanation for this is that 
e* = −e/3 should have a significantly smaller velocity due to being an 
inner mode; therefore, it will have lower phase coherence, making it 
very difficult to observe. Smaller device size or lower experimental 
temperatures might make measurement of the −e/3 mode possible.

It is noteworthy that our observation of an integrally charged 
mode differs from previous experimental findings, in which shot 
noise and Coulomb blockade measurements suggested a different 
edge structure consisting of two e* = e/3 charge modes and two neu-
tral modes45,46, with no integrally charged mode observed. A pos-
sible explanation for this discrepancy is that our sample may have a 
sharper confining potential due to the short setback of the screen-
ing wells (see Supplementary Section 7 and Supplementary Fig. 8), 
resulting in our device supporting the edge structure described in 
ref. 40. Our work provides evidence that experimental details such as 
the confining potential affect which of the candidate edge structures 
is formed at ν = 2/3. We mention that a sharp confining potential 
may also be beneficial for measuring interference at the ν = 1/3 state 
by preventing edge reconstruction and the proliferation of neutral 
edge modes47–49 that may cause dephasing50,51; neutral modes have 
been detected at ν = 1/3 and numerous other fractional quantum 
Hall states in standard GaAs structures without screening wells52.

Finally, we remark that although we have observed Aharonov–
Bohm interference of fractionally charged quasiparticles at the 
ν = 1/3 fractional quantum Hall state, we have not observed the 
fractional braiding statistics predicted for these quasiparticles1,6. It 
has been suggested that increasing the flux through the interferom-
eter by one flux quantum should result in the addition of one quasi-
particle into the area of the device to keep the system charge neutral; 
this should result in an interference phase jump Δθanyon = 4π/3 at the 
ν = 1/3 state2,12. We appear to measure only the Aharonov–Bohm 
phase when magnetic field is varied, suggesting that adding flux 
does not introduce quasiparticles in our device. Critically, the 
ν = 1/3 state has a large energy gap for the creation of quasipar-
ticles measured to be approximately 700 μeV in a 2DES of similar 
density53. This energy is more than an order of magnitude larger 
than the measured charging energy in our device ≈ μ( )17 Ve

C2

2
,  

which suggests that when the magnetic field is varied it may be 
energetically favourable for the primary quantum well to remain at 
a fixed filling factor (without creating quasiparticles) rather than a 
fixed sheet density, with the energy cost of the variations in quan-
tum well density reduced by the screening wells. When the experi-
ment is performed at a fixed filling factor it is expected that only the 
Aharonov–Bohm phase of the quasiparticles will be observed when 
magnetic field and side-gate voltage are varied2,4, consistent with our 
observations. An alternative method to introduce quasiparticles and 
measure braiding statistics would be to directly manipulate the elec-
trostatic potential with a gate in the centre of the interferometer2,4;  
efforts are underway to fabricate devices with this type of gate.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability and asso-
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Methods
The primary quantum well was measured to have a bulk electron density 
n = 1.05 × 1011 cm−2 and mobility μ = 7 × 106 cm2 V−1 s−1 measured after full device 
fabrication and in the dark.

The device was fabricated by: optical lithography and wet etching to define the 
mesa; deposition of In/Sn Ohmic contacts; electron beam lithography and electron 
beam evaporation (10 nm Ti/15 nm Au) to define the interferometer gates; optical 
lithography and electron beam evaporation (20 nm Ti/150 nm Au) to define the 
bondpads and the surface gates around the Ohmic contacts; mechanical polishing 
to thin the GaAs substrate; optical lithography and electron beam evaporation 
(200 nm Ti/150 nm Au) to define the backgates.

The device was measured in a dilution refrigerator with a base mixing 
chamber temperature T = 13 mK. Extensive heat sinking and filtering are used 

to achieve low electron temperatures and bring the electron temperature close 
to the cryostat temperature. Standard low-frequency (f = 13 Hz) 4-terminal and 
2-terminal lock-in amplifier techniques were used to probe the diagonal resistance 
and conductance across the device. Typically a 200 pA excitation current was 
used for measurements of integer states and 100 pA excitation was used when 
measuring fractional states. A +400 mV bias cool was applied to the QPC and side 
gates while the device was cooled from room temperature; this bias-cool technique 
results in an approximately 400 mV built-in bias on these gates, which improves 
device stability.
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