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Topological superconductivity is distinct from other kinds of 
superconductivity in subtle yet profound ways. What makes 
it a crown jewel among non-interacting topological phases is 

its capacity to harbour states that are non-Abelian, so neither fermi-
onic nor bosonic1,2. There is clearly a fundamental interest in under-
standing new classes of particles, but this field is made all the more 
important by the potential applications that these non-Abelian states 
have in fault-tolerant quantum computing3. Topological supercon-
ductivity can emerge intrinsically in the bulk of a material4, or it can 
be induced at an interface between two materials5. Among the wide 
variety of platforms that have been proposed to host this effect, we 
focus on interfaces of two of the most common materials—a super-
conducting metal and a semiconductor. Even though neither of the 
constituents is topological by itself, the prediction is that topological 
superconductivity will emerge when ingredients such as particle–
hole symmetry and spin–orbit interaction are borrowed from either 
side of the interface6,7. Using heterostructures of this form benefits 
from a long history of crystal growth and device fabrication of both 
superconductors and semiconductors, though aspects of their inte-
gration have introduced new challenges. A comprehensive suite of 
proposals lay out a pathway to generating, detecting and manipulat-
ing Majorana zero modes (MZMs), the most basic of non-Abelian 
anyons in these materials8,9.

The usual way of introducing topological superconductivity is 
through Majorana zero modes which are edge, end or defect states. 
Here, we take a different route, and focus on a unique property of 
the topological phase as a whole: the fermion parity anomaly that is 
a hallmark of time-reversal symmetry-breaking topological super-
conductors1,8. We shall then motivate how this anomaly directly 
mandates MZMs at system boundaries. In the case of a proxima-
tized semiconducting nanowire, the system boundaries refer to the 
two ends of the wire.

Let’s start by considering a system without boundaries: a ring of 
a strictly one-dimensional and spinless superconductor. Fermions, 
of course, possess half-integer spin, but theoretically we are free 
to assume spinless particles whose creation operators still anti-
commute8. The wave functions are periodic around the ring, and 
momenta take discrete values including one at k=0 when flux 
through the ring is zero (Fig. 1a). In order to form Cooper pairs, 
the electrons favour pairing up with a partner that has opposite 
momentum. However, because these fermions have no spin, the 
state at k=0 has no partner to form a Cooper pair with. Therefore, 

this realizes a superconducting state with a single unpaired electron. 
This is already unusual for conventional (non-topological) super-
conductors because they are fully paired in the ground state. The 
fermion parity anomaly is exposed when we apply a quantum of 
magnetic flux through the ring. The boundary conditions change 
and the fermionic k=0 state disappears: all electrons now have a 
Cooper-pair partner (Fig. 1a). The fermion parity of the ground 
state has changed from odd to even: this is an anomaly. It has not 
been directly observed but may in principle be accessed through 
Coulomb blockade oscillations of conductance10.

The genesis of Majorana modes takes place when the spinless 
superconducting ring is cut open, and thereby transformed into a 
one-dimensional wire. Imagine doing this by gradually inserting a 
barrier into the ring (Fig. 1b). As long as the barrier allows tunnel-
ling, the fermion parity anomaly must persist, and the ground state 
parity should change upon insertion of flux. But the flux through 
the loop now controls the phase of the tunnelling amplitude:  
changing flux by a single quantum flips the tunnelling amplitude 
from +t to −t. The transition from an even- to odd-parity ground 
state then requires there to be states with energies of order t8. In the 
limit of infinitely small t these are zero energy states bound to the 
ends as a consequence of topological fermion parity anomaly: they 
are the MZMs.

While spinless fermions do not exist, one strategy to obtain an 
effectively spinless superconductor is to spin-polarize all the elec-
trons. But conventional singlet superconductivity requires pairing 
of electrons of opposite spin to preserve time-reversal symmetry, 
thus making the most common superconductors unsuitable for 
hosting MZMs. A workaround is to induce superconductivity in 
a spin-polarized semiconductor using the proximity effect with 
a spin-singlet superconductor (Fig. 1c)6,7. If there is a mechanism 
for the spins of the electrons to rotate as they cross the interface, 
conventional Cooper pairs may tunnel into the semiconductor. The 
external magnetic field required to polarize semiconductors such 
as InAs or InSb, with their large effective Lande g-factors, is low 
enough to preserve superconductivity in thin films of Al or Nb. And 
spin–orbit interaction within InAs or InSb is large enough to break 
the perfect spin-polarization which allows the tunnelling Cooper 
pairs to rotate from singlet to triplet.

In order to localize MZMs it is necessary to implement a 
one-dimensional system, such as a nanowire (Fig. 1c). Initially, 
semiconductor nanowires grown via vapor–liquid–solid phase  
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epitaxy coupled to s-wave superconductors ex situ (in a separate fab-
rication process) were used. But new approaches to growth such as 
integrating epitaxial superconducting layers in situ11–13, and devel-
oping planar superconductor/two-dimensional electron gas hybrids 
as well as selective area growth of superconductor–semiconduc-
tor wire networks14,15 may advance progress towards unambiguous 
demonstration of MZMs, and facilitate experiments requiring more 
complex geometries.

Superconducting proximity effects in low-dimensional semi-
conductors had been studied for two decades prior to the first 
wave of Majorana experiments in 2012, but most experiments 
used close-to-zero applied magnetic field, and thus not in the 
spin-polarized regime. Following the predictions of Majorana 
modes in 20106,7, experiments at finite field were quickly per-
formed on semiconductor nanowire devices. They largely focused 
on identifying zero voltage bias conductance peaks at the ends of 
the nanowire, as these indicate the presence of localized states that 
the community hoped were the MZMs16–20. It was quickly realized 
that the observed peaks did not clearly correspond to any previ-
ously known phenomenon (Fig. 2a). Their most striking feature 
was a zero-bias conductance peak pinning to zero bias voltage upon 
significant changes in magnetic field. Even though they appeared 
only at finite magnetic field, the resonances apparently lacked 
Zeeman energy—they behaved as spinless, zero-energy states—just 
as Majorana modes should.

The field took a surprise swing when it became clear that reso-
nances that also do not shift from zero energy in a magnetic field 
were identified as being due to Andreev bound states (ABSs) in 
quantum dot devices (Fig. 2b)21. The similarities between ABSs and 
MZMs run deep: both phenomena correspond to low-energy (sub-
gap) bound states near superconductor boundaries. In some senses, 
it is intriguing that a different physical effect could produce such 

similar phenomenology. As we have discussed, a long topologically 
superconducting wire is expected to have two strictly zero energy 
MZMs at the ends. But in a short wire, the wave functions of the 
two MZMs partially overlap so that their interaction gives them 
both a non-zero energy and therefore they become ABSs. In turn, 
regardless of whether the wire is topological or not, any ABS can be 
represented in the ‘Majorana basis’ or, in other words, split into two 
Majorana wave functions (‘left’ and ‘right’; Fig. 2c). The two wave 
functions may fully overlap, which is the case for trivial ABS22, or 
they may strongly overlap and are then known as partially separated 
Andreev or quasi-Majorana states23. The smooth nature of the bar-
rier potential plays a crucial role in keeping such quasi-Majorana 
states near zero energy24. What is interesting is that quasi-Majorana 
states do not need to accompany a bulk topological phase, but may 
arise generically under similar conditions of strong spin–orbit 
coupling and large magnetic field23,25. An alternative source for 
non-topological zero-bias peaks is referred to as a ‘class-D’ peak26,27. 
Such a peak arises due to the level repulsion from other nearby 
states pushing some resonances to low bias. While class-D peaks 
generically exhibit less zero-bias pinning than MZMs, it is possible 
to find instances of considerable pinning through data selection25.

In light of these realizations, improved nanowire devices were 
used to investigate more nuanced predictions for the proper-
ties of Majorana zero-bias peaks. Naturally, the main aim was to 
eliminate or separate out trivial ABSs so that the MZMs could be 
unambiguously identified. For example, signatures such as the 2e2/h 
‘quantized’ conductance, the topological phase diagram in Zeeman 
energy and chemical potential, near-zero bias oscillations of con-
ductance resonances, the degree of zero-bias pinning for different 
length segments, and closing of the apparent superconducting gap 
were considered28–33. While each observation was consistent with 
MZMs, many were also reproduced without assuming MZMs25,34. A 
similar fate was in store for the efforts to demonstrate the fractional 
Josephson effect which at first was widely believed to be unique to 
MZMs6,8,35. The community has realized that this effect may not 
appear in a topological system due to dynamics effects such as qua-
siparticle relaxation and Landau–Zener transitions6,36, and the lat-
ter also responsible for apparent fractional Josephson effect even in 
non-topological systems37.

While, collectively, zero-bias conductance peaks were explored 
extensively, each individual experiment demonstrates only one or 
two of the predicted signatures of a MZM; no experiment found 
all expected features at the same time. Given that the similarities 
between ABSs and MZMs are so striking, the prospects of coming 
up with a clear single-figure ‘smoking gun’ evidence of a MZM is 
unlikely. Instead, a comprehensive set of internally consistent mea-
surements performed on the same sample is needed to unambigu-
ously establish the existence of Majorana modes. One advantage of 
the super-semi system is in the large number of control parameters 
that allow for elaborate testing of the MZM hypothesis: through gate 
voltages, magnetic field magnitude and orientation, device geom-
etry, materials and interface tailoring.

One property which may, if clearly demonstrated, definitively 
distinguish an ABS from a MZM is the non-local nature of Majorana 
wave functions, which is the correlation between left and right 
MZM. Experiments that have been conducted so far are primarily 
two-terminal measurements, and the all imply some degree of non-
locality. Recently, experiments began to appear in three-terminal 
devices (Fig. 2d)33,38,39, where near-zero energy states on the two 
ends of a nanowire can be probed independently. Alternatively, such 
three-terminal devices can be used to probe signatures of the topo-
logical quantum phase transition such as quantized heat conduc-
tance40 and non-local rectifying electrical conductance41. Proposals 
for Majorana teleportation and noise correlation measurements, 
and also Majorana mode interferometry, are some of the future 
experiments that require MZM nonlocality42,43.
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Fig. 1 | The concept of topological superconductivity using a spinless 
superconductor primer. a, Fermion parity anomaly in a ring of a spinless 
superconductor. When no external flux threads the ring, the ground state of 
a spinless superconductor features a single unpaired fermion at k=0. When 
a single flux quantum is applied, the ground state is fully paired with even 
total parity. E, energy; k, wavevector. b, MZMs (red circles) are nucleated in 
a spinless superconductor ring when a tunnel barrier (green) is introduced, 
with a flux-dependent tunnelling amplitude t(ϕ). c, the ingredients of an 
effective spinless superconductor considered here are the strong spin–orbit 
semiconductor nanowire (NW) coupled to a conventional superconductor 
(SC) in an external magnetic field B. MZMs γ are expected at the ends of 
the nanowire.
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Topological superconductivity at superconductor–semiconduc-
tor interfaces is strongly dependent on the materials that the device 
is constructed from and the properties of the interface. In contrast 
with conventional superconductivity, topological superconduc-
tivity is highly sensitive to any disorder, including scattering on 
non-magnetic impurities44. Intrinsic material parameters such as 
band offsets at the interfaces, which are not well known at present, 
may influence whether the system is close to or far from the theoret-
ical single one-dimensional channel limit. The effective g-factor and 
spin–orbit coupling at the interface may also be modified, which 
would have an impact on the formation and stability of a topological 
phase. Lattice mismatch and changes of crystal symmetry between 
the superconductor and semiconductor are also important. While 
these concerns are specific to superconductor–semiconductor sys-
tems, we expect detailed materials considerations to be key for all 
attempts to implement topological superconductivity.

One of the recent highlights with large potential for the future is 
the development of two dimensional superconductor–semiconduc-
tor heterostructures. Clean interfaces are created between an s-wave 
superconductor (typically aluminum) and a two-dimensional 
electron gas with strong spin–orbit coupling within the ultra-pure 
molecular beam epitaxy environment (Fig. 3a–c)12,32. The super-
conductor and the semiconductor can be separated by a thin tun-
nelling barrier to control the induced superconductivity. The most 
well developed materials for the semiconductor to date are InAs or 
InSb, but both of these require heteroepitaxy on lattice-mismatched 
surfaces. Therefore, inclusion of extended defects is inevitable and 
must be effectively managed to ensure that the quality of the devices 
is high. The first devices made out of these heterostructures featured 
one-dimensional channels defined either via top-down etching, or 
within a Josephson junction31,45,46. Experiments on those devices 
showed zero bias conductance peaks qualitatively similar to those 
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Fig. 2 | Zero-bias conductance peaks can appear due to MZMs or due to trivial ABSs. a, Zero-bias conductance peaks emerging at finite magnetic field  
as reported by one of the 2012 nanowire experiments16. b, Another zero-bias peak appearing at a confluence of two resonances at a finite field. These  
data appear in the supplementary materials of ref. 21 where a quantum dot device not capable of sustaining MZMs was studied. c, Subgap wave functions  
in a semiconductor nanowire coupled to a superconductor decomposed in left Majorana (green) and right Majorana (red) basis. Three situations are  
presented: well-separated topological MZMs (top), partially separated Andreev bound states (ps-ABS; middle), completely trivial ABSs (bottom) where 
green and red wave functions fully overlap. d, A three-terminal nanowire device designed to probe the left and right end of a superconductor–semiconductor  
segment S via normal probes N1 and N239. I, current; V, voltage; e, electronic charge; h, Planck constant; Vsd, source–drain voltage; Bx, magnetic field along  
the nanowire. Approximate positions of MZMs γ1 and γ2 are indicated by red circles. Figure adapted with permission from: a, ref. 16, AAAS; b, ref. 21,  
Springer Nature Ltd; d, ref. 39.
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observed in bottom-up grown nanowire-based devices, leaving the 
issue of separating MZMs and ABSs open for the moment.

To make sustained progress, the community will have to deepen 
understanding of the electronic properties specific to superconduc-
tor–semiconductor interfaces using a combination of theory and 
spectroscopy tools beyond electron transport. We expect that the 
established strengths of molecular beam epitaxy growth of semicon-
ductor heterostructures, including in situ diagnostics, high chemi-
cal purity and interface control with monolayer precision may be 
leveraged to yield even lower defect density and interfaces maxi-
mally optimized for MZM generation.

Undeniably, the prediction of non-Abelian statistics of Majorana 
zero modes, and its potential utility for quantum information pro-
cessing3 is what continues to fuel the interest in topological super-
conductivity. The most intuitive way of understanding this property 
is by physically moving two MZMs around each other and observ-
ing that the ground state parity changes. Quantum information 
stored in the charge parity is protected against small perturbations 
for a subset of quantum logic operations, although not the full set 
that is required for universal quantum computation. Moving MZMs 
is technically challenging for Majorana modes bound to ends of 
wires. Fortunately, a combination of auxiliary Majorana wires 
together with measurements of the fermion parity—the so-called 
measurement-only approaches47–50—can emulate this. The vari-
ety and increasing level of detail in these proposals clearly sets the 

superconductor–semiconductor platform apart in the efforts to 
realize scalable topological quantum computing. However, these 
geometries are quite complex and difficult to realize with bottom-up 
grown nanowires or etching down two-dimensional heterostruc-
tures (Fig. 3d). Here, a selective-area growth strategy, if proven to 
produce material of sufficient quality, may find utility as it front 
loads the fabrication effort prior to epitaxial growth (Fig. 3e)14,15,51–54. 
The predetermined network is grown through a patterned dielectric 
mask deposited on a semiconductor substrate, so that superconduc-
tors can then be deposited in situ on predetermined wire facets. 
Exploration of selective area growth capabilities and the limitations 
of this approach is an active area of research.

Coherence of a Majorana qubit depends on the magnitude of 
the induced superconducting gap which is a measure of topologi-
cal protection. It is also important to avoid non-equilibrium effects 
known as quasiparticle poisoning, which lead to fluctuations in 
charge parity and thereby scramble the two states of a Majorana 
qubit55. To date, aluminum is the preferred superconductor because 
of its relative resistance to quasiparticle poisoning. Indeed, in 
Coulomb-blockaded devices aluminum is the only known super-
conductor to produce 2e-periodic transport that also does not alter 
charge parity28,56. The superconducting gap of aluminum at zero 
magnetic field is 200 µeV (equivalent to 2 K) which gives the upper 
bound on any induced topological gap. Material parameters inher-
ent to real superconductor/semiconductor interfaces will tend to 
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reduce the gap in the topological regime, perhaps significantly. Thus 
there is strong motivation to explore other superconductors that 
may enhance the topological gap while maintaining aluminum’s 
desirable characteristic of 2e-periodic transport57–59.

To summarize the short-term goals of the field, the immediate 
attention is likely to be focused on deeper understanding of the 
materials science of superconductor-semiconductor interfaces. 
Through this, we hope to obtain robust evidence of MZMs in care-
fully designed tunnelling experiments that take into account what 
we learned in the past few years about the alternative origins for 
zero-bias peaks. On the way to qubit circuits and braiding, many 
interesting experiments await such as direct measurement of the 
fermion parity anomaly10, or non-local correlations40,41 and telepor-
tation42,43 associated with bulk topological superconductivity.

In the longer term, and perhaps more ambitiously, the same 
superconductor–semiconductor interfaces will inspire topologi-
cal physics that goes beyond Majorana zero modes, and may offer 
pathways to universal topological quantum computing60 or to 
quantum simulation of fundamental phenomena such as super-
symmetry61 and black holes62. Parafermions—generalizations of 
Majorana modes where the non-interacting nanowire is replaced 
with a fractional quantum Hall edge state—provide one exam-
ple63–65. Parafermions can intuitively be thought of as fractionalized 
Majorana modes. They obey more complex non-Abelian rules that 
can perform the entire set of Clifford gates even without measure-
ment. Parafermions have not been realized, but work on this topic 
must start from well-characterized superconductor-semiconductor 
two-dimensional interfaces. In order to enter the quantum Hall 
regime, superconductivity must withstand large out-of-plane mag-
netic fields, ruling out the use of aluminum with its critical field 
of order 10 mT. This provides another reason to experiment with 
other superconductor/semiconductor combinations in the near 
future. Van der Waals heterostructures featuring materials such as 
graphene and layered superconductors also hold great promise for 
the realization of parafermions, as superconductivity in the quan-
tum Hall regime has already been demonstrated66.

Topological superconductivity with the addition of Coulomb 
interactions has been a highly motivating topic for theorists and may 
lead to interesting experiments. Here we highlight an Ising topo-
logical phase67–69 built from an array of interacting nanowires (Fig. 
4a). This phase differs qualitatively from two-dimensional topologi-
cal superconductors because it may contain visons, the vortices that 
bind Majorana modes. Visons are truly localized in contrast with 
Abrikosov or Josephson vortices that are associated with a non-local 
halo of phase winding. The Ising topological phase is interest-
ing because it supports topological degeneracy, which arises from 
arranging these Majorana wires in a circuit with non-trivial topol-
ogy even if there are no free ends. The Ising topological phase also 
leads to completely topologically protected quantum computing60.

Another intriguing opportunity is to realize and study super-
symmetry on a semiconductor chip70. Coulomb interactions in 
a one-dimensional chain lead to phase fluctuations, which invite 
the possibility of a topological version of a superconductor–insu-
lator transition. It has recently been shown theoretically61 that in 
specific limits, this transition can coincide with the topological 
superconducting phase transition leading to a combined supersym-
metric critical point71. A symmetry that emerges at the critical point  
should connect the bosonic phase mode and the fermionic quasi-
particle mode.

Another exotic phase that deserves attention is the so-called 
Sachdev–Ye–Kitaev model72–74 based on four-Majorana interac-
tions. This phase can be created when a large number of Majorana 
modes are forced to remain at zero energy by a special chiral sym-
metry (Fig. 4b). Coupling a bundle of wires to a disordered quan-
tum dot can induce random Coulomb interactions between the 
MZMs that ultimately realizes the Sachdev–Ye–Kitaev model62. The 

model is remarkable from the theoretical point of view because it 
is one of the few strongly interacting solvable models that thermal-
izes. The model is particularly interesting as it scrambles quantum 
information at the maximal rate that is allowed75. This relates the 
behaviour of this system to conjectured quantum mechanical prop-
erties of black holes, potentially making them accessible in a table-
top experiment.

Clearly, the effort to realize Majorana modes, quite apart from the 
potential for quantum computation, will likely have broader impli-
cations for understanding deeper concepts in quantum many-body 
physics. The path forward lies through improved understand-
ing of materials science of superconductor/semiconductor inter-
faces, advanced quantum engineering and methodical partnership 
between experiment and theory.
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