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Disorder broadening of even-denominator fractional quantum Hall states in the presence
of a short-range alloy potential
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We study energy gaps of the ν = 7/2 and ν = 5/2 fractional quantum Hall states in a series of two-
dimensional electron gases containing alloy disorder. We found that gaps at these two filling factors have the
same suppression rate with alloy disorder. The dimensionless intrinsic gaps in our alloy samples obtained from
the model proposed by Morf and d’Ambrumenil are consistent with numerical results, but are larger than those
obtained from experiments on pristine samples published in the literature. The disorder broadening parameter
has large uncertainties. However, a modified analysis relying on shared intrinsic gaps yields consistent results
for both the ν = 5/2 and 7/2 fractional quantum Hall states and establishes a linear relationship between the
disorder broadening parameter and alloy concentration. Furthermore, we find that we can separate contributions
to the disorder broadening of the long-range and short-range scattering.
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I. INTRODUCTION

Disorder is one of the least understood factors impacting
many-body ground states, such as the ones forming in the
two-dimensional electron gas (2DEG). As disorder levels in
2DEGs in GaAs/AlGaAs heterostructures are reduced, there
is an increasing number of fractional quantum Hall states
(FQHSs) developing [1–3]. The influence of disorder on other
many-electron states, such as different types of electron solids,
is more intricate [4–6].

The importance of quantifying disorder effects on the
energy gap of FQHSs was recognized early on and played a
role in establishing the Laughlin nature of the ν = 1/3 FQHS
[7–10]. These efforts yielded a simple phenomenological
model that relates �meas, the measured energy gap, to �int,
the gap obtained from numerical simulations in disorder-free
models [7–10]. �int is referred to as the intrinsic gap. Accord-
ing to this phenomenological model, the measured energy gap
�meas is reduced as compared to the intrinsic gap �int by the
so-called disorder broadening parameter �:

�meas = �int − �. (1)

More recent theoretical efforts sought understanding of the
disorder-driven collapse of FQHSs [11,12] and of the impact
of disorder on quantum entanglement [13–15].

Even-denominator FQHSs, such as the ones developing at
ν = 5/2 and ν = 7/2 in 2DEGs in the GaAs/AlGaAs system
[16–19], are also affected by disorder [20–30]. These FQHSs
continue to attract interest because of their possible non-
Abelian excitations [31–33]. Within the framework of the phe-
nomenological model for the energy gaps presented above, in
order to extract the intrinsic gap from measurements one must
independently obtain both �meas and � from the measured

data. This is clearly not possible from a single measurement,
say from the knowledge of �meas

5/2 , the measured energy gap
of the ν = 5/2 FQHS. Instead, Morf and d’Ambrumenil [34]
proposed an analysis of gaps based on the measurement of
two independent quantities, the gaps measured at particle-
hole conjugated filling factors ν = 5/2 and ν = 7/2. Such an
analysis was first applied to 2DEGs of the highest available
mobility [34], henceforth referred to as pristine 2DEGs. The
extracted intrinsic gap values were in reasonable agreement
with numerical results both in high-density samples [25,34],
with electron density close to 3 × 1011 cm−2, as well as in
samples of reduced density [25], as low as 8.3 × 1010 cm−2.

The analysis of Morf and d’Ambrumenil [34] of the even-
denominator FQHSs remains important since efforts to relate
energy gaps and disorder broadening parameters of these
states to lifetime parameters failed in pristine samples. Indeed,
it was found that the measured energy gap of the ν = 5/2
FQHS does not correlate in an obvious way with either the
transport lifetime [20–28] or the quantum lifetime [24,25,30].
In fact, in gated samples it was found that the quantum
lifetime is approximately constant over the density range at
which the energy gap at ν = 5/2 decreased from its largest
value to zero [24,30]. The lack of correlation between the
energy gap and lifetime parameters is not surprising since,
in contrast to the energy gap at ν = 5/2, both the transport
and the quantum lifetimes are measured at or near zero mag-
netic field, in a regime in which single-electron descriptions
work well.

Besides pristine samples, the energy gap of the ν = 5/2
FQHS was also studied in a series of samples with short-
range scattering centers deliberately introduced during the
molecular beam epitaxy (MBE) growth process [28]. Since
these short-range scattering centers were Al atoms added to
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the GaAs channel [35,36], we will refer to these samples as
alloy samples. Since energy gap measurements at ν = 7/2
in alloy samples were not available, the analysis of Morf
and d’Ambrumenil for the even-denominator FQHSs in alloy
samples so far could not be performed.

In this paper we report energy gap measurements for the
ν = 7/2 FQHS in GaAs/AlGaAs-based samples with alloy
disorder. We found that gaps at ν = 7/2 and ν = 5/2 have
the same suppression rate with alloy disorder. These samples
with alloy disorder provided an opportunity to examine the
model put forth by Morf and d’Ambrumenil [34] in the pres-
ence of a short-range scattering potential. We found that this
model yields intrinsic energy gaps consistent with numerical
results, albeit larger than those obtained from pristine samples
published in the literature. The disorder broadening param-
eter extracted using this model had a significant scatter that
resulted in an unreasonable dependence on the alloy content
of samples. However, the additional information of a shared
dimensionless energy gap can be exploited to determine �

and its alloy content dependence. This analysis allowed us
to separate contributions to the disorder broadening due to
alloy scattering and other scattering mechanisms. Our re-
sults highlight the contrast between the effects of short-range
and long-range scattering potentials on the even-denominator
FQHSs, further an understanding of the energy gaps of these
states, and open the door for future studies of other types of
limiting disorder, such as charged impurity disorder.

II. EXPERIMENTAL METHODS AND SAMPLES

Samples used in this study are the same as those in
Ref. [28]. They are 30-nm quantum well samples of nearly
the same electron density, but in which the GaAs channel
has Al atoms added during the MBE growth process in order
to form an AlxGa1−xAs alloy [36]. Here x is the Al molar
fraction which is significantly less than the Al molar fraction
in the confining layers and it therefore does not affect the
electronic wave function perpendicular to the plane of the
2DEG. Detailed sample structures and characterization can
be found in Ref. [36]. Electrical transport measurements were
performed at dilution refrigerator temperatures in a van der
Pauw geometry, after samples were illuminated with a red
light-emitting diode [28]. Samples were mounted in a He-3
immersion cell and the temperature T of the He-3 liquid was
monitored by quartz tuning fork viscometry [37].

III. RESULTS AND DISCUSSION

Figure 1 shows the longitudinal magnetoresistance Rxx and
Hall resistance Rxy in the range of filling factors 3 < ν < 4
known as the upper spin branch of the second Landau level.
Data are shown for three samples: the pristine sample x = 0
and two alloy samples with x = 0.000 57 and x = 0.000 75.
Due to its high mobility of 20 × 106 cm2/V s, the pristine
sample exhibits all known ground states. The most prominent
FQHS is the one at ν = 7/2, but there are also others at
ν = 3 + 1/5, ν = 3 + 4/5 [19], and ν = 3 + 1/3 [38]. The
high quality of the sample also allows us to observe eight
reentrant integer quantum Hall states, ground states associated
with electronic bubble phases [19,39].
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FIG. 1. Magnetoresistance Rxx and Hall resistance Rxy in samples
with x = 0, x = 0.000 57, x = 0.000 75 alloy content in the filling
factor range of 3 < ν < 4 measured at 7 mK. Numbers indicate
the filling factors of various FQHSs; reentrant integer quantum Hall
states associated with electronic bubble phases are labeled R3a, R3b,
R3c, and R3d .

An increasing alloy content x has a strong impact on mag-
netotransport. The FQHSs at ν = 3 + 1/5 and ν = 3 + 4/5
significantly weaken and the one at ν = 3 + 1/3 is destroyed
at the lowest nonzero alloy concentration x = 0.000 57. Sim-
ilarly, magnetotransport in the bubble phases is impacted.
However, as observed in both Rxx and Rxy data, the FQHS at
ν = 7/2 survives at both x = 0.000 57 and x = 0.000 75, but
it is destroyed in the sample with x = 0.0015 (not shown).

In order to characterize the ν = 7/2 FQHS, we measure its
energy gap. In Fig. 2 we show the temperature dependence
of the longitudinal magnetoresistance measured at ν = 7/2
in the three samples in which a FQHS at this filling fac-
tor is present. As seen in the Arrhenius plots of Fig. 2,
Rxx of all three samples follows an activated form Rxx ∝
exp(−�meas

7/2 /2kBT ) at the lowest temperatures. Energy gaps
�meas

7/2 extracted are 139, 87, and 23 mK at x = 0, x = 0.000 57
and x = 0.000 75, respectively.

Similarly to observations at ν = 5/2 [28], the measured
energy gap at ν = 7/2 is suppressed by an increasing x.
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FIG. 2. Arrhenius plots for the ν = 7/2 FQHS at different Al
molar fraction x. Dotted lines are linear fits in the activated regime
used to extract energy gaps.

Consistent with prior knowledge from pristine samples
[19,22,25], the energy gap at ν = 7/2 in alloy samples is also
significantly less than that measured at ν = 5/2. As seen in
Fig. 3, energy gaps for both FQHSs exhibit a linear trend
with the alloy content x; the gap suppression rates at both
ν = 5/2 and ν = 7/2 are similar, with a value of δ�meas/δx ≈
0.15 × 103 K. This behavior indicates that both ν = 5/2 and
ν = 7/2 FQHSs respond in a similar fashion to alloy disorder.

While the two energy gaps plotted against x in Fig. 3
exhibit linear trends, data display significant scatter. Scatter in
this figure has two distinct sources: scatter in the energy gap
and scatter in x, the Al content of the alloy channel. Scatter in
the energy gap is well known from measurements in pristine
samples. For example, after repeated cycling of the sample
to room temperature, the measured energy gap is known to
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FIG. 3. Dependence of the measured energy gaps at ν = 5/2
and ν = 7/2 on the alloy content x of the channel. Energy gaps for
the ν = 5/2 FQHS are from Ref. [28]. Dashed lines are guides to
the eye.
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FIG. 4. Energy gaps �meas
5/2 and �meas

7/2 plotted against the
Coulomb energy EC . According to ideas put forth in Ref. [34],
the slope of the line through the two data points is δint , whereas
the intercept of each line with the vertical scale is the disorder
broadening parameter �.

have small variations. Similarly, variations in the sample state
due to the sample illumination procedure are likely present.
Systematic errors in the temperature measurement may also
contribute to errors in the energy gap. These sources of scatter
are often estimated to contribute to about ±10% error to the
gap. In addition, some scatter of data in Fig. 3 can be associ-
ated with the alloy forming process. Because of the extremely
low amount of Al in the channel of our alloy samples, the Al
effusion cell used for the channel alloy formation is operated
in a regime of very low flux [36]. Under these conditions there
will be errors in x, the Al content of the channel. While such
errors are difficult to quantify, their presence can be observed
as deviations from a linear dependence of the scattering rate
versus x in Ref. [36]. We attribute the correlated scatter of
the energy gaps at ν = 5/2 and ν = 7/2 present at the three
lowest x values in Fig. 3 to errors in x.

In the following we analyze the energy gaps of the two
even-denominator FQHSs using the model proposed by Morf
and d’Ambrumenil [34]. Since FQHSs are many-body ground
states, the intrinsic energy gap scales with the Coulomb
energy �int = δintEC . Here EC is the Coulomb energy, EC =
e2/4πεlB, and lB = √

h̄/eB is the magnetic length. The di-
mensionless intrinsic gap δint depends on the type of electronic
correlations, the thickness of the 2DEG in a direction perpen-
dicular to the plane of the 2DEG [24,40–46], and Landau level
mixing [24,34,45–49]. Morf and d’Ambrumenil assumed that
δint is shared for the two even-denominator FQHSs; therefore,
based on Eq. (1), the two energy gaps �meas

5/2 and �meas
7/2 both

satisfy

�meas = δintEC − �. (2)

Within this model, the disorder broadening parameter � is also
shared by the ν = 5/2 and ν = 7/2 FQHSs and independent
measurements of �meas

5/2 and �meas
7/2 allow the extraction of the

two parameters δint and �. This is achieved by plotting the two
measured gaps against EC and by fitting a line to the two data
points [34]; the slope of this line is δint, whereas the intercept
with the vertical scale is �. Such an analysis is shown in Fig. 4
for the three alloy samples exhibiting the ν = 7/2 FQHS and
we summarized the parameters of the model in Table I. �meas

5/2
used in our analysis are from Ref. [28].
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TABLE I. A summary of the dimensionless intrinsic gap δint and
disorder broadening parameter � (in units of kelvin) for the ν = 5/2
and ν = 7/2 FQHSs in a series of alloy samples.

x 0 0.00057 0.00075 0.0015 0.0026 0.0036

δint 0.024 0.026 0.020
� 2.21 2.40 1.82
�̃5/2 2.20 2.23 2.41 2.42 2.57 2.64
�̃7/2 2.20 2.25 2.32

Analyses following the model of Morf and d’Ambrumenil
of the gaps in pristine samples from the literature of electron
density close to that of ours yielded δint = 0.014 [34] in a
sample of n = 3.0 × 1011 cm−2 from Ref. [19], δint = 0.019
[25] in a sample of n = 2.78 × 1011 cm−2 from Ref. [25], and
δint = 0.019 [25] in a sample of n = 3.0 × 1011 cm−2 from
Ref. [50]. In our pristine sample x = 0 we find δint = 0.024,
a value significantly larger than those from the literature
[25,34]. Nonetheless, this value is consistent with numerical
results as it is less than δint ≈ 0.03 [41,45,51] and δint ≈
0.036 [24], values obtained in the limit of no Landau level
mixing and zero layer thickness, but it is larger than the
values δint = 0.016 [34], δint = 0.018 [24], and δint = 0.016
[48] from estimations that include both Landau level mixing
and finite layer thickness effects. However, such a consistency
can only be considered crude at best because of systematic
errors in our experiment discussed earlier and also because
the assumption of equal δint for the ν = 5/2 and 7/2 FQHSs is
only approximate in measurements of samples of fixed density
due to the slightly different Landau level mixing parameters at
these filling factors.

Since the series of alloy samples were engineered to have
the same width of their quantum well and have similar elec-
tron densities, their intrinsic gap is expected to be similar. This
is because within the phenomenological model embodied by
Eq. (1) alloy disorder factors only into the disorder broaden-
ing parameter, and not into the intrinsic gap. Dimensionless
intrinsic gaps of our alloy samples listed in Table I are
reasonably close, within an error of ±13%. The sample with
x = 0.000 75 has its δint the farthest from values in the other
two samples. We ascribe the scatter of δint to earlier discussed
systematic errors.

As the amount of disorder increases, the measured energy
gap is suppressed and the disorder broadening parameter is
expected to increase. This trend can be observed for samples
with x = 0 and x = 0.000 57, but it breaks down as x increases
to x = 0.000 75. This unphysical nonmonotonic dependence
of � on x, shown in Fig. 5, is likely due to the same errors
that led to variations in δint. Because of multiple sources of
errors, we are not able to disentangle the influence of dif-
ferent sources or error on the disorder broadening parameter.
We conclude that, due to accumulating errors, the model of
Morf and d’Ambrumenil does not yield satisfactory disorder
broadening parameters in our alloy samples.

For an improved analysis we exploit the property of shared
δint in our series of samples. In the following we calculate a
modified version of the disorder broadening �̃ which is still
based on Eq. (2), but in which we fix δint = 0.024, its value
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FIG. 5. Comparison of x dependent disorder broadening param-
eters extracted using different models. Open symbols represent �

extracted according to Ref. [34] while solid symbols are �̃ extracted
with a fixed intrinsic gap at ν = 5/2 and ν = 7/2, as described in
the text.

in our pristine sample. The parameter �̃ = δintEC − �meas can
be independently calculated at both ν = 5/2 and ν = 7/2. We
label these �̃5/2 and �̃7/2, list the obtained values in Table I,
and plot these values against x in Fig. 5. We found that both
�̃5/2 and �̃7/2, when plotted against x, exhibit significantly
less scatter than � and both have an increasing trend with x,
in agreement with our expectation. Moreover, �̃5/2 and �̃7/2

are very close, with the largest difference of only ±2%. This
shows that the modified analysis is self-consistent and it is
also consistent with the behavior shown in Fig. 3 of similar
δ�meas/δx slopes at ν = 5/2 and ν = 7/2. We conclude that
the modified analysis for obtaining the disorder broadening
parameter led to a significant improvement in the scatter of
the data.

Figure 5 suggests that the disorder broadening parameter
� has two separate contributions: one due to short-range dis-
order scattering centers �alloy and another due to the residual
scattering �res. The latter we associate with long-range scat-
tering due to a smoothly varying scattering potential of ion-
ized impurities present in all our samples; �res is independent
of the disorder level x. We suggest that the disorder broad-
ening admits the following separation: � = �res + �alloy(x).
Such a separation of the contributions of ionized impurities
and alloy impurities in our alloy samples is possible since they
are grown under similar conditions, and thus share a similar
long-range scattering potential. We also found that for the
range of alloy disorder studied, �res � �alloy(x). This find-
ing quantifies earlier qualitative results, according to which
the long-range potential due to ionized impurities is more
detrimental to the even-denominator FQHSs than short-range
potentials [26,28]. Our data yields �alloy(x) = 0.17 × 103x in
units of kelvin. Finally we note that the � = �res + �alloy(x)
relationship is reminiscent of Matthiessen’s rule for the scat-
tering times: 1/τ tot = 1/τ res + 1/τ alloy(x) found in disorder
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samples [35,36]. Here τ tot is the scattering time or mobility
lifetime in alloy samples, τ res is the scattering time due to the
ionized impurities, and τ alloy(x) is the alloy scattering time,
which explicitly depends on the disorder level x.

Most recently, ideas were put forth according to which at
these filling factors disorder may induce microscopic pud-
dles [52–58]. In Ref. [52], in the presence of a long-range
scattering due to remote ionized dopants the electron gas
breaks up into puddles of compressible and incompressible
regions [53] and the measured energy gap is determined by a
so-called saddle-point energy gap originating from thermally
driven tunneling between the puddles [52]. In this model [52]
an inflection point in the Arrhenius plots of ln(Rxx ) versus
1/T needs to be established. However, such a data analysis
is fraught with difficulties because of a commonly occurring
measurement artifact. Indeed, this inflection point is expected
to occur at low temperatures at which electrons may not
necessarily thermalize to the refrigerator temperature, unless
special thermalization techniques are used [37]. When elec-
trons do not fully thermalize, an inflection in the Arrhenius
plots is observed which, however, is not necessarily related
to the puddling effect described in the model. In addition, it is
not clear whether this model is applicable for short-range scat-
tering potentials, such as the alloy potential in our samples.
Motivated by recent thermal Hall conductance measurements
[59], other theoretical work advocates for the formation of
competing Pfaffian and anti-Pfaffian puddles on the micro-
scopic scale [54–58]. Within these models, the temperature

dependence of the magnetoresistance and its relationship to
the energy gap have not yet been worked out.

IV. CONCLUSIONS

In conclusion, we have examined the energy gaps of the
even-denominator fractional quantum Hall states in a series
of alloy samples. Energy gaps in a series of alloy disorder
samples at both ν = 5/2 and ν = 7/2 are suppressed similarly
with alloy disorder. In order to separate disorder and other
effects, we used an analysis of energy gaps proposed by
Morf and d’Ambrumenil. We found that the dimensionless
intrinsic gaps are consistent with numerical results, but are
larger than those obtained from pristine samples of similar
density published in the literature. Furthermore, the disorder
parameter exhibited significant scatter. However, a modifica-
tion of the model enabled by a shared intrinsic gap yielded
much improved results. We found that the disorder broad-
ening parameter may be split into contributions from long-
range scattering due to remote ionized impurities and that
of short-range scattering due to alloy disorder. The latter
was found to increase linearly on the alloy content of our
samples.
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