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Abstract
Simultaneous breaking of inversion- and time-reversal symmetry in Josephson junction (JJ)
leads to a possible violation of the I(ϕ) = −I(−ϕ) equality for the current–phase relation.
This is known as anomalous Josephson effect and it produces a phase shift ϕ0 in sinusoidal
current–phase relations. In ballistic JJs with non-sinusoidal current phase relation the
observed phenomenology is much richer, including the supercurrent diode effect and the
magnetochiral anisotropy (MCA) of Josephson inductance. In this work, we present
measurements of both effects on arrays of JJs defined on epitaxial Al/InAs heterostructures.
We show that the orientation of the current with respect to the lattice affects the MCA,
possibly as the result of a finite Dresselhaus component. In addition, we show that the two-fold
symmetry of the Josephson inductance reflects in the activation energy for phase slips.
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Charge transport in superconductors is driven by the phase
gradient of the condensate wavefunction. In the exemplary
case of Josephson junctions (JJs), this leads to a well-defined
current–phase relation (CPR), which describes how the cur-
rent I depends on the phase difference ϕ between the leads
[1]. The CPR critically depends on the symmetries of the
system: in particular either time-reversal or parity symme-
try require that I(ϕ) = −I(−ϕ). As a consequence, I(0) = 0
and the CPR can be written as a Fourier series of sine terms
only, I =

�
n bn sin(nϕ). If the temperature is close to the crit-

ical temperature Tc, or if the junction is relatively opaque
(tunnel limit), then the CPR reduces to a sinusoidal relation,
I = I0 sin ϕ.

To obtain a finite current at zero phase (and vice versa) it is
necessary to break the equivalence between the leads (given by
the space inversion symmetry) and simultaneously the time-
reversal symmetry. This is called the anomalous Josephson
effect [2–8]. The effect is possible in noncentrosymmetric
superconductors with large spin–orbit interaction (SOI) in the
presence of a magnetic field. In such systems theory pre-
dicts the possibility to have I(ϕ) �= −I(−ϕ). In the case of
a sinusoidal CPR, this is equivalent to a finite phase offset
ϕ0, so that I = I0 sin(ϕ + ϕ0). Such ϕ0-junctions have been
experimentally demonstrated in several systems [9–12].

Noncentrosymmetric superconductors in a magnetic field
also show magnetochiral anisotropy (MCA) effects, which
arise when certain physical quantities display correction terms
linear both in current and magnetic field [13–19]. The first
quantity to display MCA is the resistance in the fluctuation
regime of a superconductor near Tc [20–26]. In a recent work
[27], we have found that the kinetic inductance of a supercon-
ductor as well shows the MCA effect. For JJs this means that
the Josephson inductance L can be written as

L = L0[1 + γLêz(�B ×�I)], (1)

where γL is the MCA coefficient for the inductance. As a con-
sequence of the MCA, the critical currents for the two direc-
tions of the supercurrent flow differ, leading to a finite current
interval where the resistance is zero only for one bias polar-
ity. This is a supercurrent diode effect (first envisioned in
reference [28]), which has been first demonstrated in bulk
superconductors [29] and then in JJs [27]. In both cases, the
SOI was of Rashba-type and the supercurrent rectification
driven by the in-plane field perpendicular to the current. Very
recent reports [30, 31] have demonstrated the supercurrent
diode effect in systems with valley-Zeeman SOI (where the
rectification is driven by the out-of-plane field, as expected
from theory [32]), in type II Dirac semimetal [33], or in magic-
angle twisted bilayer [34] or trilayer [35, 36] graphene. In

turn, such intriguing experimental evidences have stimulated
a number of theoretical studies on non-reciprocal supercurrent
in exotic systems [36–42]. As discussed in our previous work
[27], in JJs with Rashba SOI, the supercurrent diode effect is
strictly related to the ϕ0 shift discussed above. The MCA and
supercurrent diode generalize the anomalous Josephson effect
to the case of nonsinusoidal (i.e., skewed) CPRs.

In this work, we study the supercurrent diode effect and the
MCA in JJ arrays with large Rashba SOI. We present experi-
ments that complement the main observations reported in ref-
erence [27]: we show results for different lattice orientations,
which we use to estimate the Dresselhaus contribution to the
SOI; we study the MCA for the activation energy of thermally
activated phase slips, which we connect to the anisotropy of
the inductance. Our results provide a useful illustration of the
role of SOI on the CPR.

1. Ballistic SNS junctions in epitaxial AL/InAs
heterostructures

A clean superconductor with synthetic Rashba interaction
can be produced combining an epitaxial Al film and a high-
mobility 2D electron gas (2DEG) confined in a InGaAs/InAs
quantum well. If the barrier between 2DEG and Al film is
transparent, then the 2DEG former will be proximitized by the
superconducting Al, leading to a Rashba 2D superconductor.
The combination of superconductivity and SOI is at the basis
of topological superconductivity. This material platform has
therefore been mainly developed by the community studying
Majorana modes and topological superconductivity.

Our devices are fabricated starting from a heterostructure
whose top layers are Al (7 nm)/In0.2Ga0.8As (10 nm)/InAs
(2DEG) (7 nm)/In0.2Ga0.8As (4 nm) (see the supplementary
material of reference [43] for the full layer sequence). To
obtain JJs of finite width W we define a mesa using a phospho-
ric acid-based wet etching procedure. The chosen width W is
the result of a compromise between a sufficiently high Joseph-
son coupling (increasing with W) and a measurable Josephson
inductance (decreasing with W). In our experiments this leads
to widths of the order of few micrometers, which correspond
to a critical current of several microamperes.

SNS junctions are obtained by selectively etching Al to
form 100 nm-long gaps separating the remaining rectangular
Al islands. A SEM picture of the device is shown in figure 1(a),
while a sketch of it is depicted in figures 1(b) and (c). The
selective etching is by far the most critical step of the fabrica-
tion process. The disorder introduced into the shallow 2DEG
of the exposed InAs regions must be minimized in order to
obtain ballistic junctions with high transparency.
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Figure 1. (a) Scanning electron micrograph of a portion of the Josephson junction arrays under study (sample 3). The 3.3 μm-wide mesa is
fabricated by deep etching, while the gaps between the top Al islands are obtained by selective etching. (b) Corresponding scheme of the
structure. The yellow part highlights the quantum well where the 2D electron gas is located. (c) Top layer sequence for the heterostructure.
As substrate, we indicate the remaining layers, not relevant for the transport. The complete sequence can be found in reference [43].
(d) Scheme of the cold RLC circuit located next to the sample. (e) Resonance curve measured for sample 3 at T = 100 mK, and at zero
applied DC bias and field. (f) Measured L(I) curve for the same sample. Each L value is deduced from the center frequency of the
corresponding RLC resonance spectrum.

2. Cold RLC resonators for Josephson inductance
measurements in the MHz regime

DC transport measurements provide only partial information
about single JJs. For instance, the Josephson coupling between
the leads is deduced from the critical current—an interesting
situation where an equilibrium quantity is deduced from AC
transport measurements. The CPR is not accessible without
making use of a SQUID geometry in perpendicular magnetic
field. Josephson coupling and CPR can instead be directly
accessed in single junctions by measuring its Josephson induc-
tance, clearly with AC measurements. For example, given
the CPR relationI = I0 f (ϕ) (where I0 is the relevant current
scale and f is a 2π periodic function) the Josephson induc-
tance immediately emerges from the ratio between Josephson
voltage and time derivative of the CPR

L(ϕ) =
V
d
dt I

=
Φ0

dϕ
dt

1
2π

d
dt [I0 f (ϕ)]

=
Φ0

2πI0 f ′(ϕ)
. (2)

In a simple junction without loop, it is the current and not the
phase that is controlled, therefore it is convenient to integrate
ϕ̇ = 2πLİ/Φ0 to obtain the inverse CPR ϕ(I):

ϕ(I) − ϕ(0) =
2π

Φ0

� I

0
L(I′)dI′, (3)

where L(I) is the measured quantity. Therefore, the Josephson
inductance as a function of the current is proportional to the
derivative of the inverse CPR ϕ(I).

The difficulties in the measurement of the Josephson induc-
tance are related to the fact that it is typically much smaller
than the inductance of the cryostat cables. To decouple the
sample from the external cabling, it is possible to embed
the sample in a low resistance resonator decoupled from the
external leads by resistors. The resonance frequency will then
directly provide the inductance if the Q factor is above unity.
The circuit scheme of the RLC resonator used in this work
is shown in figure 1(d). The Q factor of the loop is approxi-

mately given by the formula for series RLC tank, Q = 1
Rl

�
Ll
Cs

.

Here Rl and Ll are, respectively, the total resistance (i.e., sam-
ple resistance R plus external circuit resistance in series Rs)
and total inductance of the loop (i.e., sample inductance L plus
external circuit inductance in series Ls), while Cs is the series
capacitance, given by an external capacitor. The choice of the
working point for the frequency is crucial. For a series RLC,
the higher the frequency, the higher the sensitivity. On the other
hand, at very high frequency measurements in the presence of
magnetic fields are difficult since emerging dissipation would
immediately damp the resonance. Moreover, at high frequency
(rf regime close to the plasma frequency) the physics of a JJ
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is not equivalent to that in DC. At very high frequency, one
must take into account transmission line resonance on the very
sample.

For our measurements we have chosen to operate in the
MHz range. This frequency regime allows us to operate
under large magnetic fields without significant damping of the
resonance. Also, this frequency range is below any relevant
physical threshold for the JJs under study (plasma frequency
ωP ≈ 240 GHz, first transmission line mode for the array
ω0 = 250 MHz), so that for any practical purpose we are
operating in quasi-DC regime. Figure 1(e) shows a typical res-
onance spectrum measured by lock-in, whose center frequency
directly provides the inductance. The Josephson inductance is
obtained by subtracting the external inductance of the circuit,
which has been determined in a dedicated calibration session.
Our typical inductance measurement consists in measuring
RLC spectra as a function of control parameters, e.g., the DC
current as in the measurement of L(I) shown in figure 1(f).
The inductance is deduced from the resonance frequency, since
the external resistance Rs, capacitance Cs and inductance Ls

in series to the sample [see circuit scheme in figure 1(d)] are
known.

This method (which is an adaptation, with modern electron-
ics, of the experiment in reference [44]) makes it also possible
to accurately extract the sample resistance R via the resonance
quality factor Q. However, for our circuit parameter, the Q fac-
tor is suppressed already for resistances of the order of 1 Ω,
which is roughly four orders of magnitude less than the normal
resistance of our samples. This means that the inductance mea-
surements shown here are all conducted deep in the supercon-
ducting regime, where the resistance is a very small fraction of
the normal state resistance.

As shown below, the typical inductance of a 3 μm-wide and
100 nm-long JJ is of the order of 100 pH. In the MHz regime
we operate in, this inductance is below the resolution limit
of our electronics. Therefore, instead of a single junction, we
measure an array of thousands junctions. If their spacing is suf-
ficient to exclude mutual (e.g., magnetic) interaction, they will
behave as a set of inductors in series, i.e., the measured induc-
tance will reflect the sum of the ensemble. This configuration
has advantages and disadvantages. The disadvantage is that the
critical current (or field) is set by the weakest junction. When
that value is reached the emerging resistance is enough to damp
the resonance. For this reason, measured L(I) curves, as e.g.
that shown in figure 1(f), terminate before the expected diver-
gence at the critical current. Working with arrays has also cru-
cial advantages beyond the obvious increase in sensitivity. In
fact, in large JJ arrays imperfections in single JJs are unimpor-
tant, since only the average behavior is measured. If a weaker
junction is present, its inductance will be higher than the typ-
ical one, but it will hardly affect the total inductance given by
thousands of JJs. This is true as long as the current is below
the reduced critical current value for the weakest junction, as
discussed above.

3. Characterization of ballistic Josephson
junctions in Rashba 2DEGs

The CPR of short ballistic SNS junctions at finite tempera-
ture T can be described by the complete Furusaki–Beenakker
formula [45, 46]

I(ϕ) = I0 f (ϕ) = I0

τ̄ sin ϕ tanh
�

� ∗
2kBT

�
1 − τ̄ sin2

�
ϕ
2

� �

2
�

1 − τ̄ sin2
�

ϕ
2

� ,

(4)
where τ̄ it the transmission coefficient and Δ∗ is the effective
gap at the leads. In our case τ̄ refers to the average transmission
coefficient, while Δ∗ refers to the induced gap in the 2DEG
region just underneath the epitaxial Al film. The characteristic
current I0 (which coincides with the critical current only for
τ̄ → 1 and T → 0) is given by

I0 =
eΔ∗

h̄
N, (5)

where N is the number of spin-degenerate transverse modes
in the channel. To characterize our junctions we need three
parameters, namely I0,τ̄ and Δ∗. The first two can be obtained
from a L(I) measurement at T/Tc � 1. In particular, τ̄ is
determined from the curvature of the graph of L(0)/L versus
2πL(0)I/Φ0, which in the low temperature limit depends only
on τ̄ [43], see red curve in figure 1(f).

The transmission coefficient strictly depends on the qual-
ity of the selective Al etching defining the weak link. In our
best JJ arrays, we obtained average transmission close to unity,
e.g., τ̄ = 0.94 in reference [43]. If τ̄ is found (and thus the low
temperature limit of the CPR), I0 can then be calculated from
L(0) = Φ0/[2πI0 f ′(0)].

The characterization of Δ∗(T ) requires, instead, data at
finite temperature, as it is evident from equation (4). It is
important to notice that for an epitaxial Al/InAs 2DEG bilayer,
the temperature dependence of the induced gap Δ∗(T ) differs
from that predicted by BCS [47–50]. More precisely Δ∗(T )
depends on both the BCS-like gap of the Al film and on the
coupling coefficient γB between Al film and 2DEG (see, e.g.,
equation (17) in reference [48] or equation (S7) in reference
[43]) which can be determined by fit. However, in the low
temperature limit this dependence on γB is weak, therefore
the extracted Δ∗(0) = 130μeV value is independent of theory.
In fact, when plugged into equation (5) it provides a num-
ber of channels very close to that extracted from the Sharvin
resistance [43].

The robust determination of the number of transverse
channels in a 3.15 μm-wide conductor allows us to deduce the
Fermi wavelength λF = 33 nm. To extract the Fermi velocity,
an estimate for the effective mass is needed. For bulk InAs the
best estimate [51] is m∗ = 0.026m0, where m0 is the electron
mass. In quantum wells, owing to confinement, the effective
mass is renormalized [52–54]. In quantum wells with similar

4



J. Phys.: Condens. Matter 34 (2022) 154005 C Baumgartner et al

layer composition, but with narrower quantum well (4 nm as
opposed to 7 nm in our structures), the effective mass was mea-
sured to be m∗ = 0.04m0 [54]. Since in our wafers the confine-
ment is less pronounced, we expect the effective mass to be in
between 0.026m0 (bulk InAs) and 0.04m0 (reference [54]), i.e.,
a value near m∗ = 0.03m0. With this assumption, we deduce
a Fermi velocity vF = 7.31 × 105 m s−1. The Fermi velocity,
together with Al superconducting gap (ΔAl = 220μeV [43]),
allows us to estimate an important parameter for SNS
junctions, namely, λ = L ΔAl/(h̄vF) = 0.046, where L =
100 nm is the junction length [55]. The fact that λ is so
much smaller than unity implies that our junctions can be con-
sidered to be deeply in the short junction limit. It allows us to
discriminate the above mentioned renormalizationof the effec-
tive gap [50] from the simple reduction of the ABS-energy
because of a non-vanishing length of the junction.

4. SNS junctions with strong spin–orbit coupling:
� 0 and supercurrent diode effect

In this section we will discuss the consequences of the ballistic
character on the physics of JJs in the presence of large SOI.
Several recent works [9–12] have demonstrated that, in the
presence of Rashba SOI and broken time-reversal symmetry, a
JJ might show an anomalous Josephson effect, i.e., a ϕ0 shift
of the CPR. In multimode conductors, the ϕ0 shift is mainly
determined by the channels with low Fermi velocity.

In a ϕ0-junction, a purely sinusoidal CPR is still antisym-
metric around the (ϕ0-shifted) zero current point, i.e., if φ ≡
ϕ − ϕ0, then I(φ) = −I(−φ). Thus, the positive and negative
branch of the CPR are equal and opposite, and the CPR inflec-
tion point still occurs at I = 0. In our experiments, we show
that if the junction is ballistic and an in-plane field is applied
perpendicular to the supercurrent direction, then SOI will not
simply lead to a ϕ0 shift, but will effectively distort the CPR in
an asymmetric way, so that positive and negative branches will
differ. As a consequence, positive and negative critical currents
will differ, giving rise to the supercurrent diode effect.

In the experiments reported in reference [27], we show that
the main effect of an in-plane field perpendicular to the current
consists in the addition of a cosine term to the CPR, which only
contains sine terms in the absence of the magnetic field. If the
unperturbed CPR is purely sinusoidal (low τ limit), the addi-
tion of a cosine produces a shifted sine, i.e., a phase shift ϕ0.
However, if higher harmonics in the CPR are not negligible,
the situation is more complex. Let us consider first the Fourier
expansion of a generic skewed CPR

I(ϕ) =
	

n

bn sin(nϕ). (6)

In the presence of magnetic field (and thus anomalous Joseph-
son effect) each n-term would acquire its own ϕ0,n shift. The
determination of each ϕ0,n is nontrivial [6], and in general
ϕ0,n �= nϕ0, where ϕ0 is some common phase shift. Therefore,
the resulting CPRs will not be merely shifted. Instead, each

ϕ0,n shift will be equivalent to the addition of a an cos(nϕ)
term in the Fourier series. In the Furusaki–Beenakker CPR,
the Fourier coefficients bn are exponentially suppressed with n
(see supplementary information in reference [27]), therefore,
in a rough approximation, only the first terms will be impor-
tant. Keeping only the leading terms in the approximation

I(ϕ) ≈ b1 sin(ϕ) + a1 cos(ϕ) + b2 sin(2ϕ), (7)

where a1 is proportional to both magnetic field and Rashba
SOI strength, while b2 mainly determine the skewedness. The
MCA effect requires both a1 and b2 to be nonzero, while the
simple anomalous shift ϕ0 only requires the former.

The supercurrent diode effect can be measured with
standard DC transport experiments. Figure 2(a) shows the
Fraunhofer pattern measured in sample 1 in the presence of an
in-plane field (Bx = 100 mT) directed parallel to the supercur-
rent direction. For this field alignment there is no MCA effect:
positive and negative critical currents are the same, i.e., the
graph is symmetric around the abscissa axis. In contrast, in
the presence of an in-plane field Bip = 75 mT perpendicular
to the current, the critical currents for opposite polarities are
different, see figure 2(b). We stress that critical current val-
ues in both figures 2(a) and (b) were obtained by sweeping the
current from zero to finite (either positive or negative) bias.
Interestingly, when the supercurrent diode effect is enabled
[figure 2(b)], the critical current difference is pronounced only
for small values of Bz, as visible in figure 2(c): this figure shows
(symbols) the absolute value of the critical current difference
as a function of Bz, normalized to the Bz = 0 value. We notice
also that such difference oscillates with Bz with a flux period
of Φ0/2, as it can be seen in the zoomed graph in figure 2(d).
The peculiar Bz dependence can be captured by the product of
the critical current and the first higher harmonic Fourier coef-
ficient b2 of the Fourier expansion of the Furusaki–Beenakker
CPR. The former term contains the envelope of all the harmon-
ics producing the Fraunhofer pattern, while the latter contains
the most relevant term for the skewedness of the CPR, which as
explained above, determines the diode effect. The curve, cal-
culated from equation (4) with parameters extracted from the
experiment [27, 43] [solid line in figure 2(d)] nicely matches
the experimental data, including the alternating sequence of
cusp-like and quadratic minima. This clearly demonstrates that
in short-ballistic JJs the diode effect is mainly determined by
the first higher harmonic b2 above the fundamental term.

Finally, for Bz = 0 we can extract the Bip dependence of the
diode effect, depicted in figure 2(e). Up to about Bip ≈ 80 mT,
the dependence is nearly linear, as expected by a magnetochiral
effect, see equation (1). Above this threshold, the critical
current asymmetry rapidly decreases, indicating that pair-
breaking is at work. Interestingly, the diode effect is more
fragile than bare superconductivity, since it relies on higher
harmonics of the CPR, which are suppressed well before
the fundamental term. Thus, at sufficiently high field, one
still observes finite critical current but no supercurrent diode
effect.
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Figure 2. (a) Fraunhofer pattern for sample 1, measured applying an in plane field Bip = 100 mT parallel to the current direction. (b) The
same measurement for Bip = 75 mT applied perpendicular to the current direction. (c) Measured (at Bip = 75 mT) absolute value of the
difference |� Ic| between the critical currents for positive and negative bias (symbols), and calculated product Ic · b2 of critical current and
second Fourier coefficient (gray line). Both curves are plotted as a function of the out-of-plane field Bz and normalized to the Bz = 0 value.
(d) Zoom-in that highlights the oscillations of the critical current difference with flux period � 0/2. (e) � Ic versus Bip at Bz = 0.

5. Impact of lattice orientation on magnetochiral
anisotropy

As discussed above, the supercurrent diode effect is a direct
consequence of the distortion of a skewed CPR produced by
an in-plane field in the presence of a spin-split conduction
band. The asymmetry between the positive and negative CPR
branches implies that (i) positive and negative critical currents
are different, (ii) the inductance is not an even function of I
anymore, owing to the magnetochiral correction term linear in
both current and field, see equation (1). The inductance is pro-
portional to the derivative of the inverse CPR, ϕ(I), therefore
(ii) is equivalent to a shift of the CPR inflection point from
I = 0 to a finite value I = i∗. The latter value can be experi-
mentally determined from the minimum of the L(I)curve.

In our junctions the MCA is a small correction, therefore we
can approximate the L(I) curve as a parabola near zero current,
i.e., L(I) ≈ L0 + L′

0I + L′′
0 I2. The CPR can then be character-

ized by the three coefficients L0,L′
0, and L′′

0 . In particular, it is
L′

0 that mostly determines the MCA. At finite in-plane field
Bip, one can extract the MCA coefficient γL ≡ −2L′

0/(L0Bip).
As shown in the L(I) measurements plotted in figure 2 of
reference [27], our experiments confirm that it is indeed the
in-plane field component perpendicular to the current that
determines the MCA. In fact, if the sample is rotated keep-
ing constant the in-plane field magnitude and direction, then
both L′

0 and γL display a sinusoidal dependence on the angle
between�I and �Bip, with the maximum anisotropy occurring for
θ = ±90◦.

For a conductor with purely Rashba SOI, the direction of
the current with respect to the underlying lattice is unimpor-
tant, since both spin-split Fermi surfaces are isotropic. For
generic Rashba (α) and Dresselhaus (β) SOI parameters, the
spin–orbit field �Ω is defined such that the perturbative SOI
term of the Hamiltonian is [56]

HSOI = �Ω · �̂σ = (α − β)kyσ̂x − (α + β)kxσ̂y. (8)

The magnitude of the MCA effect depends on the �Ω compo-
nent parallel to the current, corresponding to a k-space direc-
tion perpendicular to the current [ky direction for our axis

choice, see figures 3(e) and (f)]. In the pure Rashba SOI
case (β = 0), the modulus of the pseudo-magnetic field |�Ω| is
isotropic (its magnitude does not depend on the direction in the
reciprocal space), and thus the particular mutual orientation of
current and lattice is irrelevant.

The situation changes in the presence of a small Dressel-
haus SOI component (β �= 0). In this case, the total spin–orbit
field |�Ω| is reduced (enhanced) for the k-direction where
Rashba and Dresselhaus SOI fields are antiparallel (parallel).
As a result, a finite Dresselhaus component breaks the sym-
metry among different crystal directions. To verify the pres-
ence of a Dresselhaus component, we have fabricated an array
(sample 3) which is, to the best of our ability, identi-
cal to the array used for the measurements reported above
(sample 1). The only nominal difference is the orientation of
the current with respect to the lattice axes: in sample 1 the cur-
rent is directed along the [110] direction, while in sample 3 it is
directed along the [110] axis. We have then repeated the induc-
tance MCA measurements, whose results are summarized in
figure 3(a). The L(I) curves for different angles θ between
�Bip and�I in sample 3 are similar to those for sample 1 reported
in reference [27]. Using the same procedure described there,
we can extract the L0,L′

0, and L′′
0 coefficients; L0 and L′

0 are
plotted as a function of θ in figures 3(b) and (c), respectively.
The blue (red) curve refers to sample 1 (sample 3). First, we
notice that the two L0 coefficients are very similar (indicating
a good reproducibility of the fabrication procedure) and both
have a very weak angular dependence [notice the small range
for the vertical axis in figure 3(b)]. Second, the L′

0 coefficients
show small, but important, differences: the amplitude of the
90◦–270◦ excursion is larger in sample 1, while an anoma-
lous plateau near θ = 0◦ is more pronounced in sample 3.
From those values we can calculate γL for the two samples,
see figure 3(d). From the amplitude of the quasi-sinusoidal
curves, we deduce a ratio r between the maximum L′

0 for sam-
ple 3 (current parallel to [11̄0]) and that for sample 1 (current
parallel to [110]). In our experiment we obtain r = 0.854.

As discussed above, r �= 1 can be attributed to a Dressel-
haus SOI component. Numerical quantum transport simula-
tions (computed with the KWANT package [57], using the
methodology and parameters as described in reference [27])
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Figure 3. (a) The top sketch shows the mutual orientation of the vectors current�I, in-plane field �Bip, and �n (unit vector perpendicular to the
surface and pointing to the top) for θ = 0◦ (brown), θ = 90◦ (red), θ = 180◦ (green), and θ = 270◦ (blue). The graphs show the L(I) curve
for each value of θ, with the same color code. (b) Constant term L0 (see text) for the measured L(I) curve, plotted as a function of θ for
sample 1 (blue) and sample 3 (red). In sample 1 (sample 3) the current is directed along the [110] ([11̄0]) direction. (c) Plot of L′

0 as a
function of θ for sample 1 and sample 3. (d) Plot of γL(θ). (e) Scheme showing the magnitude of the total (Rashba plus Dresselhaus) SOI
field in sample 1, sketched for different �k with respect to the current direction (horizontal). Here we assume β < 0, which is the case for
InAs quantum wells. (f) The same for sample 3. In sample 1 the current direction is directed along the �k direction where the SOI field is the
largest (Rashba and Dresselhaus add), while for sample 3 the current points to the �k direction of least SOI field.

Figure 4. (a) Arrhenius plot of the temperature dependence of the resistance R(T ), plotted for different angles θ between current and
in-plane magnetic field. (b) Activation energy extracted from the linear part of the graph panel (a) (blue symbols), plotted together with
twice the Josephson energy 2EJ calculated via the Ambegaokar–Halperin theory (red, see text).

found that in good approximation r is a linear function of
|β|, more precisely r ≈ 1.004 − 0.225|β| with β expressed in
meV nm−1 units. On this basis, we can estimate a Dresselhaus
parameter of β ≈ −0.67 meV nm−1, which is approximately
in line with the �k · �p estimate reported in the supplementary
information of reference [27].

6. Angle dependence of the thermal activation for
phase slips

In the previous sections we have discussed in detail the two-
fold anisotropy induced by the in-plane field on L′

0, and thus on
the inflection point of the CPR, which is at the basis of MCA.
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We have also highlighted a weaker, but still evident anisotropy
in L0. A two-fold anisotropy in L0 is expected to produce a
similar anisotropy in the Josephson coupling EJ = h̄Ic/2e and,
consequently, an anisotropic activation energy for phase slips
in the junctions.

The experiments discussed so far mainly focus on the deep
superconducting regime at temperatures close to the base tem-
perature of our dilution refrigerator, where T � Δ∗/kB. For
our JJ arrays the Josephson energy is much larger than the
charging energy, thus in this regime we cannot detect any resis-
tive phase slip effect. To investigate the angle dependence of
the phase slip rate, we must work in a temperature regime
closer to Tc. However, one must keep in mind that sample
resistances larger than few ohms are not compatible with the
resonator technique. The resonator can indeed be used to mea-
sure very small resistance changes via the Q factor, but as long
as the total resistance of the RLC tank is above few ohms
(roughly 1 mΩ per junction), the resonance is suppressed alto-
gether. Hence, we studied phase slip rates by conventional DC
transport measurements.

Figure 4(a) shows the Arrhenius plot of the temperature-
dependent resistance near Tc in an in-plane field of 90 mT.
Each curve refers to a different angle θ between in-plane field
�Bip and current�I. The resistance is clearly thermally activated
with an activation energy that depends on the angle of the in-
plane field. At the lowest temperature, there are deviations
from the Arrhenius law, most probably due to 2–3 junctions
with reduced Ic. From the linear part of the Arrhenius curve
we can extract the activation energy, which is plotted versus θ
in figure 4(b) (blue symbols). In the same curve (red symbols),
we show the corresponding values of twice the Josephson
energy, 2EJ, calculated via the Ambegaokar–Halperin theory
[58], adapted to describe junctions with the non-sinusoidal
CPR as in equation (4). In the calculation, we could only match
(approximately, as seen in panel (b)) the experimental values
by multiplying by a factor η the Δ∗ expected from equation
(17) in reference [48], with parameter τ̄ , ΔAl and γB extracted
from the experiments on sample 3. As shown in figure 4(c) the
parameter η is relatively angle independent and close to 0.37,
indicating that close to Tc the induced gap is about one third
of what expected by equation (17) of reference [48]. On the
one hand, this temperature regime is well above that explored
in references [27, 43]. On the other, the theory in reference
[48] is only valid far from Tc, therefore it does not apply to
the measurements in figure 4(a). We have also tried to intro-
duce a certain Gaussian spread of the EJ values in our model.
However, even admitting a relatively large spread (standard
deviation 25% of the mean value), it is impossible to match
the experimental data without a substantial reduction of Δ∗

compared to the prediction of equation (17) in reference [48].

7. Conclusions

In conclusion, we have studied the supercurrent diode effect
and the MCA for the inductance in arrays of JJs with large
spin–orbit coupling. These experiments complement those
reported in the literature. We observe a dependence of the

diode effect on the mutual orientation of supercurrent and lat-
tice axes, which signals the presence of an additional Dres-
selhaus spin–orbit coupling term. Finally, we can correlate
the anisotropy in the in-plane field dependence of the induc-
tance with that of the phase-slip activation energy obtained
from standard DC transport measurements. Superconducting
diodes are the first step towards dissipation-free electronics.
In perspective, they might play a crucial role in dissipationless
memories, or in superconducting microwave detectors with
ultra-high sensitivity.
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