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Andreev bound states with opposite phase-inversion asymmetries are observed in local tunneling
spectra at the two ends of a superconductor-semiconductor-superconductor planar Josephson junction
in the presence of a perpendicular magnetic field, while the nonlocal spectra remain phase symmetric.
Spectral signatures agree with a theoretical model, yielding a physical picture in which phase textures
in superconducting leads localize and control the position of Andreev bound states in the junction,
demonstrating a simple means of controlling the position and size of Andreev states within a
planar junction.
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The manipulation of spatial properties of Andreev bound
states (ABSs), both their position and spatial extent, is an
important goal in contemporary superconducting physics.
For instance, several physical braiding protocols that
can test exotic exchange statistics, including certain con-
structions of a topological quantum processor, rely on
spatially exchanging the positions of Majorana zero modes
(MZMs) [1–4]. While measurement-based braiding proto-
cols of MZMs have also been proposed [5–7], experimental
progress in that direction is limited. The spatial extent of
ABSs is also a key parameter that determines the coupling
of states in Andreev molecules [8,9], Majorana chains, and
quantum-dot states interacting via superconductors [10–12].
A general method for spatially manipulating ABSs, which is
also fast and hysteresis-free, is highly sought after. In this
direction, previous works have suggested the use of
chemical potential [2] and magnetic field texture [13–15]
for spatial control of ABSs. Experimentally, an array of
electrostatic gates has been used for local ABS control
[16,17].
Controllable superconducting phase provides an addi-

tional useful knob for ABS manipulation. In bulk super-
conductors, Abrikosov and Pearl vortices [18,19] represent
windings of the superconducting phase that can trap ABSs,
including MZMs [20,21]. Spatial manipulation of individ-
ual vortices has been demonstrated [22–27]. Similarly,
Josephson vortices arising from phase windings in super-
conductor-normal-superconductor (SNS) junctions, are
also amenable to spatial manipulation [28–32] and can
host MZMs [33–35]. In planar Josephson junctions (PJJs),
recent proposals have suggested that superconducting
phase textures, not necessarily in a vortex configuration,
can be used to spatially control MZMs and even execute

braiding operations [34–36]. Encouraging progress has
been made toward realizing topological superconductivity
on this platform [37–44].
In this Letter, we study PJJs consisting of SNS junctions,

where N is a semiconductor with strong spin-orbit cou-
pling. We focus on nontopological ABSs and study their
response to a perpendicular magnetic field applied through
the junction. A spatially varying phase texture is induced on
the two superconducting leads. ABSs formed in the N
region respond to this phase texture such that their
localization length is controlled by the magnitude of
magnetic flux penetrating the junction area and their
position is controlled by a phase bias applied across
the junction.
The PJJs are fabricated on InAs=Al heterostructure

stacks. The N region comprises an InAs layer with Al
stripped away, whereas the S regions are composed of
patterned Al=InAs superconducting leads [Fig. 1(a)].
Quantum point contacts, formed by electrostatic gating,
allow tunneling spectroscopy at the two ends of the
junction, with the labels top or T and bot or B in
Fig. 1(a) identifying the top and bottom ends, respectively.
Nonlocal electrical transport between the two ends allows
bulk spectroscopy [45–49]. Phase biasing of the junction is
obtained by embedding in a radio-frequency superconduct-
ing quantum interference device geometry, consisting of a
superconducting loop. At low perpendicular magnetic field,
jB⊥j ∼ 0.1 mT, we observe phase-inversion-symmetric
conductance spectra [Figs. 1(b)–1(e)]. As jB⊥j is increased,
the local conductance spectra become phase-inversion
asymmetric, with opposite phase asymmetries in the top
[Figs. 1(b) and 1(c)] and bottom local conductances
[Figs. 1(d) and 1(e)]. On the other hand, the nonlocal
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conductance spectrum remains relatively phase symmetric
within each flux lobe [Fig. 3].
This conductance fingerprint is captured by theoretical

simulations. The combination of phase biasing and mag-
netic field penetrating the Josephson junction creates a
phase texture within the two S leads, which we obtain
from a Ginzburg-Landau calculation (see Supplemental
Material [50]). As a result, the proximity induced gap in the
N region is spatially modulated. Andreev bound states are
trapped at positions along the junction where the local
phase difference ∼ð2nþ 1Þπ, with n being an integer. For

every flux quantum (Φ0 ¼ h=2e) that enters (exits) the
superconducting loop, localized Andreev bound states are
pumped from the outer (inner) to the inner (outer) junction
end, creating phase-inversion-asymmetric conductance pat-
terns at the two ends. Since these modes are spatially
localized, they do not appear in the nonlocal conductance
spectra. When the magnetic field through the junction
center (defined later) exceeds Φ0, well-localized Josephson
vortices are formed.
Figure 1(a) shows an electron micrograph of one of

the devices, along with a schematic electrical circuit.
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FIG. 1. Device micrograph and differential conductance as a function of perpendicular magnetic field. (a) False-color electron
micrograph of a planar Josephson junction device measured in a three-terminal configuration allowing local and nonlocal tunneling
spectroscopy. dc biases, VT and VB, are applied to top and bottom Ohmic contacts through current amplifiers (CAs) connected to the
respective terminals. The superconducting loop is grounded. Gates V topðbotÞ and V tðbÞqpc create an electrostatic constriction at the top
(bottom) end for tunneling spectroscopy. Vsc controls density under the superconducting leads. V1 controls density in the junction. An
out-of-plane magnetic field threads magnetic flux through the device. Two distinct areas of flux penetration are identified: the Josephson
junction (JJ) indicated by a black dashed rectangle and the superconducting loop indicated by the red dashed rectangle of larger size. (b),
(e) Differential conductance measured at the top and bottom ends of the junction, as a function of the out-of-plane magnetic field B⊥.
The superconducting gap oscillates periodically, with period comparable to Φ0 ¼ h=2e through the superconducting loop. The
magnitude of the gap at both ends is diminished as jB⊥j increases. (c) Top and (d) bottom end differential conductance spectrum
showing ∼3 flux lobes centered around (left) B⊥ ¼ −5, (center) B⊥ ¼ 0, and (right) B⊥ ¼ þ5 mT. Notice that the top and bottom
conductance spectra become phase asymmetric at finite B⊥, with the sense of asymmetry reversed upon changing the sign of B⊥. The
sense of asymmetry is opposite for the top and bottom conductance spectra.
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The device is fabricated on a molecular-beam-epitaxy
grown heterostructure with an InAs quantumwell separated
from a top Al layer by an In0.75Ga0.25As barrier. A
combination of wet etching of the Al layer and deep wet
etching of the semiconductor stack is used to define the
superconducting loop, the Josephson junction, and the
mesa with a U-shaped trench. A patch of the mesa (with
Al removed) within the loop is contacted by a layer of
Ti=Au to form an internal submicron Ohmic contact to
enable bottom-end tunneling spectroscopy. A layer of
HfO2, grown by atomic layer deposition and patterned
in a rectangular shape, is used to isolate the Ti=Au layer
from the superconducting loop and the conducting mesa. A
second layer of HfO2 is deposited globally followed by the
deposition of Ti=Au gates for electrostatic control of the
junction and the quantum point contacts (QPCs). The
carrier density in the normal barrier of the JJ (width
wn ¼ 100 nm, length l ¼ 1.6 μm) is controlled by ener-
gizing gate voltage V1. Gate voltage Vsc controls the carrier
density in the semiconductor underneath the superconduct-
ing leads. Split gates controlled by voltages VTQPC and
VBQPC electrostatically define constrictions at the top and
bottom of the junction to serve as QPC tunnel barriers.
Additional gates controlled by V top and Vbot control
densities in the normal regions outside the QPCs and are
typically fixed at ∼100 mV. Here we focus on results from
device 1; qualitatively similar results are obtained in device
2 (see Supplemental Material, Figs. S8–S10 [50]).
We first investigate local tunneling spectra at the two

ends as a function of perpendicular magnetic field as shown
in Fig. 1(b) (top end) and 1(e) (bottom end). We observe a
superconducting gap at both ends that is periodically
modulated with a periodicity of B⊥ ≃ 0.14 mT, corre-
sponding to Φ0 through the superconducting loop. The
spectra also show a large scale structure with respect to B⊥,
where the amplitude of gap modulation is suppressed with
jB⊥j (see also Figs. S6 and S7 [50]).
Focusing on the large scale gap structure, we observed

that individual flux lobes acquire significant phase
asymmetry as jB⊥j was increased. This is represented in
Figs. 1(c) and 1(d). For flux lobes centered around
B⊥ ¼ −5 mT, the top-end local differential conductance
GTT shows a set of arrowhead-shaped features that
approach zero bias at the left (more negative field) end
of the lobe and become maximally gapped at the right (less
negative field) end. This pattern is reversed for the bottom-
end conductance spectra GBB. Investigating the structure of
the flux lobes at B⊥ ¼ þ5 mT shows that the sense of this
asymmetry in flux is reversed at both ends. Flux lobes
centered around B⊥ ¼ 0 are left-right symmetric; that is,
the gap is modulated symmetrically within each flux lobe at
both ends.
To help understand this behavior, we perform theoretical

simulations of the device. When subjected to a perpendicular
magnetic field, identical Meissner supercurrents are set up in

the superconducting leads, leading to a spatially varying
phase profile (see Supplemental Material for details [50]).
We use Ginzburg-Landau equations to calculate the phase
profile within the gauge A⃗ ¼ −yB⊥x̂. The phase configu-
rations in the left (ϕL) and right leads (ϕR) obtain a B⊥-
dependent gradient given by dϕL=RðxÞ=dx ¼ �πdSB⊥=Φ0,
where dS ¼ ðwn þ wsÞ ¼ 300 nm is the center-to-center
distance between the two superconducting leads. The effect
of the magnetic field through the superconducting loop is
modeled as a global phase difference, ϕ0 ¼ 2πALB⊥=Φ0

between the two leads, where AL ≃ 15 μm2 is the effective
loop area. As a result, the gauge-invariant phase differ-
ence across the junction is given as ΔϕðxÞ ¼ ϕ0þ
ð2πdSB⊥=Φ0Þx. The central area of the junction
Ac ¼ dSl determines the total phase winding along the
junction ΔϕðlÞ − Δϕð0Þ ¼ ð2πB⊥Ac=Φ0Þ. Each 2π wind-
ing of the local phase difference corresponds to a Josephson
vortex in the junction [30,57].
In the model, ABSs are trapped in nodes of the local

phase difference, when Δϕðx0Þ ¼ π at a position x0 along
the junction. The node position x0 can be controlled by the
global phase bias ϕ0. The localization length of the ABS
along the junction, ξB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Φ0=B⊥
p ffiffiffiffiffiffiffiffiffiffiffiffi

ξP=dS
p

, is controlled
by the perpendicular magnetic field threading the junction,
where ξP is the proximity induced coherence length (see
Supplemental Material [50]). At large B⊥, ξB ≤ l, and well-
developed Josephson vortices are formed at the nodes. The
number of vortices is given by ≃Φ0=ðdSLB⊥Þ.
Using exact diagonalization of a minimal tight-binding

model of the Josephson junction, we find that the nodes
bind low-energy Andreev bound states. In Figs. 2(a)
and 2(b), we show the local-density-of-states (LDOS)
map of the lowest-energy ABS trapped within the junction,
formed at B⊥ ¼ −5.02 mT. Higher-energy ABSs, roughly
≃2Φ0=ðdSB⊥λFÞ in number, where λF is the Fermi
wavelength, are also formed within the vortex core (see
Fig. S2 [50]). Variation of the loop flux by B⊥ changes the
position of the node, as represented by the LDOS maps in
Fig. 2(b) at different values of magnetic field centered
around B⊥ ¼ −5 mT. At jB⊥j ≃ 0, ABSs are delocalized
over the entire length of the junction [Fig. 2(c)] and exhibit
spatial modulations due to the standing wave condition in
the junction. The periodicity of these oscillations is roughly
half the Fermi wavelength. Unlike Fraunhofer oscillations,
where the critical Josephson current is minimal when the
junction traps a flux quantum, we do not observe distinctive
spectral signatures associated with this effect (see Figs. S2,
S4, S6, and S8 in the Supplemental Material [50]).
These ABSs produce distinctive conductance signatures.

We attach normal leads to the two ends of the junction and
evaluate the 2 × 2 conductance matrix as a function of B⊥
[Figs. 2(e)–2(g)]. Around B⊥ ¼ −5 mT, Fig. 2(e), local
conductances, GTT and GBB, display phase-inversion-
asymmetric lobes with opposite asymmetries at the two
ends. A gap minimum in GTT and GBB is observed when
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the local phase difference ΔϕðxÞ ∼ π at the top (x ¼ l) and
bottom (x ¼ 0) ends, respectively. This happens at different
magnetic field values, with ΔB⊥ ¼ AcB⊥=AL.
Around each gap minimum, the lowest-energy states

fade at the top and reappear at the bottom as the magnitude
of the magnetic field is increased. These are the strongly
localized, lowest-energy modes trapped in the phase node.
In contrast, nonlocal conductances, GTB and GBT, remain
comparatively phase-inversion symmetric and do not have
pronounced gap minima. The main contribution to nonlocal
conductance comes from states that are extended through-
out the junction [46,47] and are therefore largely unaffected
by local phase differences. At B⊥ ¼ 0 [Fig. 2(f)], all the
junction modes are extended and the flux lobes are
symmetric in both local and nonlocal conductances.
Even though our conductance calculations are performed

in the clean limit, in the diffusive limit we expect similar
results with a renormalized superconducting coherence
length in the Al/InAs heterostructure [30]. Furthermore,
we expect that spin-orbit coupling is not relevant for the
central features of our data (see Supplemental Material for
exact diagonalization of the vortex ABS, which are almost
spin degenerate [50]). Finally, we notice that the observed
phase asymmetry is stronger in the experiment compared to
theory. This may be attributed to the finite inductance
of the superconducting loop used for phase biasing. The
phase dropped across this inductance causes a nonlinear

relationship between B⊥ and the phase bias, contracting
phase spectra near ϕ ¼ π and expanding them near ϕ ¼ 0
(see [44]). This effect is not included in our model and may
explain the larger asymmetry in experiment compared to
theory.
We next consider experimental measurement of nonlocal

differential conductance (see Supplemental Material [50]
and Ref. [49] for details). As seen in Fig. 3, the phase-
inversion asymmetry that was present in local conductances
is strongly suppressed in the nonlocal spectra. For example,
flux lobes centered around B⊥ ¼ �5 mT, shown in
Figs. 3(b) and 3(c), display weak asymmetry within each
flux lobe. Furthermore, states that close the spectral gap
in the local spectra [Figs. 1(c) and 1(d)] are absent in
nonlocal spectra.
Reasonable agreement between theoretical and experi-

mental conductance matrix signatures supports our
interpretation of spatial manipulation of ABSs with super-
conducting phase texture. In the presence of a finite in-
plane magnetic field, Josephson junctions with strong
spin-orbit coupling, such as ours, may host spin-split
Andreev bound states and topologically protected
Majorana zero modes [37,39]. We expect our ABS manipu-
lation scheme towork also at finite in-plane magnetic fields,
where apart from a reduction of the induced gap size, the
phase response of nontopological ABSs remains qualita-
tively similar. However, the case of Majorana bound states

(a) (b)

(e) (f) (g)

(c) (d)

FIG. 2. Theory. (a) Schematic of the device showing supercurrent profile in the superconducting leads, of width ws and length l, at
finite B⊥. Arrows correspond to the gauge-invariant local supercurrent density j⃗. A global phase difference ϕ0 is imposed between the S
leads by a superconducting loop (not shown). The normal barrier N, of width wn, is connected by tunnel barriers to normal leads at the
two ends for conductance calculations. The red dashed lines indicate the central area of the junction that determines the relative local
phase difference between the top and bottom ends. (b)–(d) LDOS of the lowest-energy Andreev bound state around (b) B⊥ ¼ −5,
(c) B⊥ ¼ 0, and (d) B⊥ ¼ þ5 mT, in steps of ΔB⊥ ¼ 0.04 mT. (e)–(g) Calculated conductance matrix at finite out-of-plane magnetic
field around (e) B⊥ ¼ −5, (f) B⊥ ¼ 0, and (g) B⊥ ¼ 5 mT, respectively.
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may be more complicated since the topological phase
boundary is also determined by the phase profile along
the junction [34,36]. Detailed experiments in the high field
regime are required to go further in the direction of non-
Abelian braiding and fusion-rule experiments using this
scheme [34,36,58]. Future work may focus on this.
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FIG. 3. Nonlocal differential conductance as a function of
perpendicular magnetic field. Nonlocal differential conductan-
ces (a) GBT and (d) GTB, as a function of the out-of-plane
magnetic field B⊥. The nonlocal gap is periodically modulated
with the loop flux. The magnitude of the nonlocal gap at both
ends is diminished as jB⊥j increases. (b) GBT and (c) GTB
measured for ∼3 flux lobes centered around (left) B⊥ ¼ −5,
(center) B⊥ ¼ 0, and (right) B⊥ ¼ þ5 mT. Compared to the
local conductances, the nonlocal conductances are relatively
phase symmetric at all values of B⊥. Also, subgap states that
approach zero energy in local conductances (Fig. 1) are absent in
the nonlocal spectrum.
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