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We present measurements and simulations of semiconductor-superconductor heterostructure devices that
are consistent with the observation of topological superconductivity and Majorana zero modes. The devices
are fabricated from high-mobility two-dimensional electron gases in which quasi-one-dimensional wires are
defined by electrostatic gates. These devices enable measurements of local and nonlocal transport properties
and have been optimized via extensive simulations to ensure robustness against nonuniformity and disorder.
Our main result is that several devices, fabricated according to the design’s engineering specifications, have
passed the topological gap protocol defined in Pikulin et al. (arXiv:2103.12217). This protocol is a stringent
test composed of a sequence of three-terminal local and nonlocal transport measurements performed while
varying the magnetic field, semiconductor electron density, and junction transparencies. Passing the protocol
indicates a high probability of detection of a topological phase hosting Majorana zero modes as determined by
large-scale disorder simulations. Our experimental results are consistent with a quantum phase transition into
a topological superconducting phase that extends over several hundred millitesla in magnetic field and several
millivolts in gate voltage, corresponding to approximately one hundred microelectronvolts in Zeeman energy and
chemical potential in the semiconducting wire. These regions feature a closing and reopening of the bulk gap,
with simultaneous zero-bias conductance peaks at both ends of the devices that withstand changes in the junction
transparencies. The extracted maximum topological gaps in our devices are 20–60 µeV. This demonstration is a
prerequisite for experiments involving fusion and braiding of Majorana zero modes.
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I. INTRODUCTION

Topological quantum computation offers the promise of a
high degree of intrinsic hardware-level fault tolerance [1–6],
potentially enabling a single-module quantum computing sys-
tem that is capable of solving critical problems sufficiently
rapidly to have societal impact [7]. This approach hinges
on (a) reliably producing a stable topological phase of mat-
ter that supports non-Abelian quasiparticles or defects and
(b) processing quantum information through protected oper-
ations, such as braiding. The former is challenging due to the
material parameter and disorder requirements for topological
phases of matter. In this paper, we report on three-terminal
semiconductor-superconductor nanowire devices that pass the
stringent topological gap protocol [8] and therefore satisfy
these requirements. We further extract the gap associated with
the topological superconducting phase in our devices [9–12].

Topological phases are a form of matter in which the
ground state has long-range quantum entanglement and there
is a gap to excited states [13]. Unlike phases of matter that
can be distinguished completely by local measurements, topo-
logical phases are identified by the transformations of their
low-energy states that result from fusing and braiding their
quasiparticles and defects. Directly measuring these proper-
ties in experiments is rather subtle [14], hindering efforts to
fully determine the topological order of candidate materials.
In the fractional quantum Hall regime, for example, a quan-
tized Hall conductance reveals the presence of a nontrivial
topological phase, but many different topological phases can
have the same Hall conductance. Consequently, different mea-
surements are necessary to determine which topological phase
is present in a given device [15–22].

In the case of quasi-one-dimensional superconducting
wires without any symmetries enforced, there are only two
phases, one trivial and one topological. The latter supports
Majorana zero modes (MZMs) localized at the ends of the
nanowire [9,11,12]. While MZMs can be directly detected
through fusion and braiding, one of their auxiliary signatures
are zero-bias peaks (ZBPs) in the differential tunneling con-
ductance at the nanowire’s ends [23–28]. Indeed, most of the
earlier experimental studies of candidate topological super-
conductors focused on ZBPs [29–42]. However, ZBPs can
also be caused by disorder [43–45], smooth potential varia-
tions near the tunnel junction [46–51], unintentional quantum
dots [52,53], or a supercurrent [54]. These trivial ZBPs can
persist over a fairly large range of system parameters [55–57].

A ZBP associated with an MZM must have a partner at
the other end of the wire and should be stable to variations in
the electric and magnetic fields in the device. The stability
of MZMs with respect to such variations is determined by
the bulk gap. However, if a device has a sufficiently large

number of control parameters, it is likely that it can be tuned
into a configuration in which it has trivial ZBPs at both ends.
Meanwhile, the predicted range of stability of a topological
phase depends strongly on device geometry, the full stack of
materials, and disorder, rendering it difficult to distinguish
“stable” ZBPs from “accidental” ones purely empirically. An-
alyzing the detailed shapes of tunneling conductance spectra
leads to some loose qualitative patterns, but there is no sharp
binary distinction between the local tunneling conductance
spectra associated with MZMs and trivial ZBPs at nonzero
temperature. In short, neither more extensive data sets of ZBPs
nor more beautiful ZBPs can distinguish the topological and
trivial phases. Therefore, it is crucial to develop a practical,
reliable protocol that enables the detection of the topological
superconducting phase of a nanowire, and it is clear that
additional measurements beyond the tunneling conductance
are necessary for such a protocol.

This challenge is addressed by the topological gap protocol
(TGP) [8], which is designed to reliably identify the topolog-
ical phase through a series of stringent experimental tests. At
the heart of this protocol is the fact that there is necessarily a
quantum phase transition between the trivial and topological
phases [58]. The protocol detects a bulk phase transition be-
tween low-magnetic-field and high-magnetic-field phases via
a bulk gap closing. It establishes that the high-field phase is
topological through the stability of its ZBPs, in a manner that
we specify below. The TGP requires three-terminal device
geometries, which overcome the limitations of many earlier
two-terminal devices. They allow ZBPs to be simultaneously
observed at both ends and also allow for a measurement of
the bulk transport gap through the nonlocal conductance.
The protocol is passed when (a) ZBPs are observed in the
local conductances measured at tunnel junctions at both ends
of a wire, and they are stable to changes in the junction
transparency; (b) these stable ZBPs persist over a range of
magnetic fields and electron densities in the wire; (c) a closing
and reopening of the bulk transport gap is detected in the
nonlocal conductances; (d) there is a region in the bulk phase
diagram whose boundary is gapless and whose interior is
gapped and has stable ZBPs; (e) the observed bulk transport
gap throughout this region, the topological gap, exceeds the
resolution of the measurement.

The hallmarks of most topological phases, including the
one discussed here, are rather subtle: there is no signature
as immediate as a quantized conductance or Meissner effect
since there is no transport coefficient or thermodynamic ob-
servable that is a topological invariant of one-dimensional
(1D) superconductors. Instead, the existence of a topological
phase is imprinted on the measurable properties of the system
in a manner that can only be identified through an elaborate
measurement and analysis procedure such as the TGP or
the even more elaborate procedures necessary for fusion and
braiding. Thus, it is of paramount importance that the TGP
has been validated by applying it to simulated transport data,
especially since the tunneling spectroscopy and transport mea-
surements comprising the TGP do not measure a topological
invariant directly.

In simulated devices, we know whether there is a topo-
logical phase since we can compute a topological invariant.
Hence, we tested the TGP on transport data from simulated
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devices by comparing its output to this topological invariant.
We emphasize that we have not attempted to establish qualita-
tive similarities between simulated and measured conductance
plots and this is not the purpose of these simulations. The goal
is see if the TGP correctly distinguishes between regions with
trivial and nontrivial topological invariant.

We simulated hundreds of devices with different disorder
levels and concluded that if a device passes the TGP, then
the probability that the candidate region in the phase diagram
is not topological is <8% at the 95% confidence level. The
TGP thereby distinguishes MZMs from trivial Andreev bound
states and determines whether topological superconductivity
is present in the parameter range scanned in a data set. Having
thus confirmed the reliability of the TGP on simulated data,
we formulate the central question of this paper: Can we fabri-
cate and measure devices that pass the TGP?

We answer this question in the affirmative by presenting
data from four devices, named A, B, C, and D, that have
passed this protocol with respective maximum topological
gaps ranging between 20–60 µeV. As we explain in more
detail in Sec. II, our devices are based on heterostructures
combining indium arsenide (InAs) and aluminum (Al). The
superconducting component is an Al strip, epitaxially grown
on the semiconductor so that it induces superconductivity via
the proximity effect. The semiconducting portion is a shallow
InAs quantum well hosting a two-dimensional electron gas
(2DEG) that has been depleted by electrostatic gates, except
for a narrow conducting wire that remains underneath the
aluminum strip. Within this suite of components, we have
used simulations to optimize the material stack and the device
geometry with respect to the topological gap.

Disorder is the principal obstacle to realizing a topolog-
ical phase supporting MZMs. We have used simulations to
predict the (design-dependent) disorder level that the topo-
logical phase can tolerate. These simulations incorporate
self-consistent electrostatics, the orbital effect of the magnetic
field, and realistic semiconductor-superconductor coupling;
see Refs. [41,59,60] for more details. Consequently, they
show both qualitatively and quantitatively how device de-
sign can impact the effective disorder strength. Many of the
resulting specifications are quite demanding, including (1)
higher mobility (>60 000 cm2/V s) than previously achieved
in shallow InAs quantum wells and (2) gate-defined wires that
are sufficiently narrow (<120 nm) as to enable tuning into the
single sub-band regime.

Our simulations indicate that mesoscopic fluctuations are
important in our 3 µm long “topological gap devices” based
on InAs-Al heterostructures (see Fig. 2). Thus, even devices
with the same average disorder level can have different TGP
outcomes: some disorder realizations will pass while others
fail. The disorder strength determines an expected yield for
passing the TGP which is between 0% and 100% over a range
of disorder levels. As expected from these simulation results,
we have also measured devices that were similar to devices
A–D but did not pass the TGP, and we report on data from
two of them, which have been named devices E and F.

In summary, each of devices A–D has a high probability of
being in the topological phase. To the best of our knowledge,
these devices are the first to have passed as stringent a set of
requirements as those encompassed by the TGP, namely, (a)

concurrent ZBPs that are stable both with respect to changes
of the junction parameters and also with respect to changes
of the bulk parameters that are larger (in appropriate units)
than the bulk gap; and (b) a bulk gap closing and reopening in
response to an increasing magnetic field that is visible in the
nonlocal conductance, indicating a quantum phase transition
into a phase with correlated ZBPs.

II. TOPOLOGICAL GAP DEVICE DESIGN
AND REQUIREMENTS

A. Proximitized semiconductor nanowire model
and its topological phase diagram

In this section we briefly review the proximitized nanowire
model [11,12] which supports topological superconductivity
over a range of densities and magnetic fields. The minimal
model is comprised of a semiconductor nanowire with Rashba
spin-orbit interaction coupled to a conventional (s-wave) su-
perconductor. The effective Hamiltonian for such a system is

H = HSM + �indOSC,

HSM =
∫ L

0
dx ψ†

σ (x)

(
− ∂2

x

2m∗ −μ+iασ̂y∂x +Vxσ̂x

)
σσ ′

ψσ ′ (x),

OSC =
∫ L

0
dx (ψ†

↑(x)ψ†
↓(x) + H.c.). (1)

Here, “SM” and “SC” are abbreviations for, respectively,
semiconductor and superconductor, m∗, μ, and α are the effec-
tive mass, chemical potential, and Rashba spin-orbit coupling,
respectively. Vx is the Zeeman splitting due to the applied
magnetic field B along the nanowire: Vx =gSMμBB/2, where
gSM and μB are, respectively, the Landé g-factor and Bohr
magneton. The proximity to the s-wave superconductor is
effectively described by the pairing operator OSC, while �ind

is the induced pairing potential.
The zero-temperature phase diagram of the proximitized

nanowire Hamiltonian of Eq. (1) consists of a trivial (s-wave-
like) phase and a topological phase, as shown in Fig. 1. The
latter supports MZMs at the opposite ends of the nanowire and
is in the same phase as a spinless p-wave superconductor [9].
The trivial and topological phases are separated by a quantum
phase transition at Vx =

√
μ2 + |�ind|2 which is necessarily

accompanied by the closing of the bulk gap. The stability of
a topological phase is characterized by its bulk transport gap
or, equivalently, the gap to extended excited states, which we
call the topological gap �T. In the idealized case of Eq. (1),
this is simply the bulk gap. This phase has been proposed to
occur in quasi-one-dimensional systems composed of chains
of magnetic atoms on the surface of a superconductor [61–65];
in nanowires that are completely encircled by a supercon-
ducting shell in which the order parameter winds around the
wire due to the orbital effect of the magnetic field [41,66,67];
and in the vortex cores of three-dimensional superconduc-
tors [68,69]. The corresponding two-dimensional topological
superconducting state can occur in p + ip superconductors
[58], at the surface of a topological insulator [70–72], in
ferromagnetic insulator-semiconductor-superconductor het-
erostructures [10,24,38,73–76], and in s-wave superfluids of
ultracold fermionic atoms [77,78].
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FIG. 1. (a) Energy spectrum as a function of momentum k along
the nanowire. Rashba spin-orbit coupling splits the parabola at the
bottom of the band into two parabolas displaced in k. The Zeeman
energy Vx is proportional to the external magnetic field perpendicular
to the direction of the Rashba spin-orbit coupling. A nonzero Zeeman
energy Vx opens a gap at k = 0. When the chemical potential μ is
within the gap, the nanowire Hamiltonian (1) has only one pair of
Fermi points with spin and momentum locked. The color gradient
represents the change of spin orientation with momentum. (b) The
topological phase diagram as a function of Zeeman energy Vx and
chemical potential μ. �ind is the superconducting gap induced in
the semiconductor nanowire. The low-field (blue) phase is a triv-
ial superconductor while the high-field (red) phase is a topological
superconductor that supports MZMs at the opposite ends of the
nanowire.

The model discussed so far neglects many of the ingredi-
ents of actual devices, such as additional sub-bands and the
orbital effect of the magnetic field. To address this, we have
developed realistic three-dimensional (3D) simulations that
take these effects into account. These simulations include self-
consistent electrostatics, orbital magnetic field contributions,
and renormalization effects due to coupling to the supercon-
ductor [59,60,79–82]. We have validated these simulations
through comparison with ARPES [83], THz spectroscopy
[84], the Hall bar measurements reported in Appendix B, and
transport through multiple types of previous devices involv-
ing proximitized semiconductor nanowires [41,85–87]. We
also take into account multiple disorder mechanisms such
as charged disorder and variations of geometry and com-
position along the wire length, as discussed in Sec. II E.
The superconductor’s degrees of freedom are integrated out,
yielding a formulation in which it is encapsulated by self-
energy boundary conditions [41,86,87]. Using this advanced
simulation model, we optimized the design for gate-defined
devices based on high-quality 2DEG heterostructures in order
to minimize the effects of disorder, additional su-bands, and
the orbital effect of the magnetic field. This design is pre-
sented in the next subsection. We extract the parameters of
a minimal model projected to the lowest sub-band (neglecting
couplings to higher sub-bands which are suppressed by large
sub-band level spacing) in Appendix A 1. Our minimal model
is similar to Eq. (1). The parameters that define this effective
single-sub-band model are listed in Table I. This projected
model and the full 3D model show good agreement for bulk
quantities in the field and density ranges of interest. In order
to simulate transport properties, we add a realistic description
of the junctions (junction design is described in the following
section). We perform these simulations by projecting the full
3D model of our device to the low-energy subspace. The

TABLE I. Single-band effective model parameters obtained for
various device designs. The δ′ stack is not simulated. It has similar
effective parameters to the δ stack, but differs in lever arm.

Design, m∗ α∗ � dμ/dVp

stack [me] [meV nm] g∗ [meV] [meV/V]

SLG-β 0.032 8.7 −11.8 0.13 85
DLG-δ 0.032 8.4 −11.5 0.21 79
DLG-ε 0.032 8.3 −11.4 0.32 78

corresponding results are presented in Sec. III. After we have
discussed the device design, we describe the general effects
of disorder in mesoscopic topological wires, then quantify the
effective disorder potential in our devices.

B. Gate-defined proximitized nanowire

Our devices are defined by an Al strip separated from an
InAs quantum well by a barrier layer. There are two designs
which are conceptually similar but have some practical dif-
ferences. One has a single-layer gate (SLG) design while the
other has a dual-layer gate (DLG) design, shown in Figs. 2 and
3, respectively. We will refer to both designs as “topological
gap devices.” A cross-section of an SLG device is shown in
Fig. 2(d), where the Al strip is light gray. The strip’s dimen-
sions have been optimized using the simulations described
above: length 10 µm, width <120 nm, thickness <10 nm.

The length is in the direction perpendicular to the cross-
section in Fig. 2(d). The Al strip is covered by a several nm
thick top oxide formed by controlled oxidation [not shown in
Fig. 2(d) or Fig. 3(c)]. The Al strip features larger Al pads at
each end of its 10 µm length, which can be seen at the right and
left edges of the scanning electron micrograph (SEM) images
in Figs. 2(b) and 3(b). The pads are contacted with Ti/Au or
Ti/Al Ohmic leads, by which the Al strip is grounded. (Both
types of contacts are normal in the typical operating regime.)
We will denote the direction perpendicular to the surface of
the quantum well as the z direction, while the directions along
and perpendicular to the Al strip are the x and y direction,
respectively, as shown in Figs. 2(c) and 2(d).

There is a dielectric layer that separates the
superconductor-semiconductor heterostructure from the
electrostatic gates that are at the top of the cross-section in
Figs. 2(d) and 3(c). The gates deplete the 2DEG except
underneath the Al, which partially screens their electric fields,
thereby creating a high-quality nanowire. The top view in
Fig. 2(a) and the SEM image in Fig. 2(b) show that the
split-gate structure of the SLG design is divided into three
sections: three plunger gates and three cutter gates. The three
plunger gates serve to deplete the 2DEG on their side of the
Al strip while the three cutter gates deplete the 2DEG on
the other side. Once the 2DEG has been depleted, operating
the plunger gates at even more negative voltages tunes the
density underneath the Al via the fringe electric fields that
remain after screening by the Al. The densities in the left,
middle, and right sections can be controlled independently by
the three plunger gates. We operate in the low-density limit
in which only the lowest z-direction sub-band is occupied
so, here and henceforth, will use the term “sub-band” for
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FIG. 2. (a) A schematic of the top view of the active area of a single-layer gate (SLG) topological gap device. All of the labeled gates
serve to deplete the 2DEG in the InAs quantum well to define a high-quality one-dimensional conducting channel. The left, middle, and right
plungers also tune the density in the corresponding sections of the device, while the left and right cutters also open and close the junctions.
The two unlabeled gates are the “helper gates” which are used to control the electron density in the junctions and leads, the latter of which are
connected to a measurement circuit as shown in this panel. (b) An SEM image of a topological gap device. The dashed line indicates the active
region depicted in (a). (c) Region of nonzero electron density (orange) in the InAs quantum well when the device is tuned to the operating
regime: the middle section (underneath the middle cutter/plunger) is tuned to the topological regime while the outer sections (underneath the
left/right cutter/plunger gates) are tuned to the trivial phase using the plunger gates. The black curve shows the local density of states in the
wire near zero energy, computed in the ideal disorder-free limit. (d) A schematic of the cross-section of an SLG topological gap device, in
which the Al strip induces proximity superconductivity in the one-dimensional InAs nanowire that is defined by the gates shown in (a) and
extends perpendicular to this cross-sectional view. The x, y, and z directions are indicated in (c) and (d).

y-direction sub-bands. The left and right plungers control
the densities underneath the corresponding sections of the
Al, which are normally set for full depletion (no occupied
sub-bands) underneath the Al. The width of the Al strip was
chosen to enable this for moderate gate voltages Vdep > −3 V
and also to minimize the orbital effects of a magnetic field in
the x direction.

There are two side tunnel junctions at the boundaries be-
tween the middle cutter gate and the left/right cutter gates,
enabling the three-terminal measurements [88–92] of the con-
ductance matrix that are necessary for the TGP, as we discuss
in Sec. III. In addition to depleting the 2DEG on the opposite
side of the Al strip from the plungers, the left and right cutter
gate voltages Vlc and Vrc are also used to vary, respectively, the
transparency of the left and right tunnel junctions. The split-
gate geometry with plunger-cutter pairs ensures independent
tuning of density and junction transparency for each section of
the gate-defined nanowire. The two junctions are typically
tuned into the tunneling regime in which the above-gap low-
temperature differential tunneling conductance GN is � e2/h,
while the Al strip is grounded. The junctions are connected to
Ohmic contacts via conducting paths in the 2DEG. There are
two “helper” gates, which are the unlabeled gates at the bot-
tom of Fig. 2(a); they extend from the junctions to the bottom
edge of the SEM in Fig. 2(b). The helper gates define these
conducting paths by accumulating carrier density in the 2DEG
underneath them and keeping it conducting. The orange

region in Fig. 2(c) shows where the electron density is nonzero
in the 2DEG in the device’s normal operating regime: under-
neath the middle section of the Al strip and underneath the
helper gates.

In the DLG design, instead of a split-gate geometry, the
plunger gates cover the Al strip completely, as illustrated
schematically in Fig. 3(a) and in an SEM image shown in
Fig. 3(b). This makes it considerably easier to align the gates
with the Al strip. Moreover, the plunger gates have a single
role, which is to control the electron density in the 2DEG, to
fully deplete it underneath the regions adjacent to the Al strip
and to either fully deplete it or to tune it to the lowest sub-band
directly underneath the Al strip. The function of controlling
the bulk density is separated from the function of opening and
closing the junctions, which is accomplished by cutter gates
that are in a second gate layer, separated from the first gate
layer by a second dielectric layer. The cutter gates in the DLG
design only cover the junctions, so they do not affect the bulk
density in the wire. Although the above differences between
the SLG and DLG designs are practically important, the basic
principles and length scales are the same in both.

We will call the semiconductor underneath the middle sec-
tion “the wire,” and the superconducting gap that is induced in
the wire at B = 0 via the proximity effect the “induced gap”
�ind. We denote the middle plunger gate voltage by Vp, which
tunes the density in the wire. At the optimal operation point,
the wire is tuned to the single-sub-band regime that occurs just
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FIG. 3. (a) A schematic of the top view of the active area of
a dual-layer gate (DLG) topological gap device. The plunger gates
serve to deplete the 2DEG in the InAs quantum well to define a
high-quality one-dimensional conducting channel and to tune the
density in the corresponding sections of the device. The left and right
cutters open and close the junctions. The two unlabeled gates are
the “helper gates” which are used to increase the electron density
in the junctions and leads, the latter of which are connected to a
measurement circuit as shown in this panel. (b) An SEM image of
a DLG topological gap device. The dashed line indicates the active
region depicted in (a). (c) A schematic of the cross-section of the
middle section of a DLG topological gap device, in which the Al
strip induces proximity superconductivity in the one-dimensional
InAs nanowire that is defined by the gates shown in (a) and extends
perpendicular to this cross-sectional view. The bulk of the wire does
not have a second gate layer, but the junctions have cutter gates in
a second gate layer, and the second dielectric layer separates them
from the plunger gates in the first gate layer.

before full depletion Vp � Vdep. We will focus on the phase
diagram of the wire as a function of the middle plunger gate
voltage Vp and the magnetic field B.

We comment briefly on the length of the wire here and
discuss it in greater detail in Appendix A 3. To operate
the device in the optimal regime, the nanowire should be
much longer than the coherence length in the topological
superconducting state, so that MZMs are well localized at
the opposite ends of the nanowire [the situation depicted in
Fig. 2(c)]. In this case, MZMs would lead to ZBPs that are
stable with respect to local perturbations. When the coherence

length is comparable to or larger than the nanowire length, a
ZBP at one end of the wire may arise from an Andreev state
extending from the opposite end [93]. In this case, however,
we do not expect ZBPs to be stable with respect to local
perturbations. Our simulations suggest that, for these designs
and material stacks, the coherence length in the topological
state varies between 100–250 nm in the absence of disorder.
The wire is designed to be much longer than this. Disorder
in the bulk of the nanowire suppresses the topological gap
and increases the coherence length which, as we discuss in
Appendix A 3, leads to a nontrivial requirement for the wire
length which depends on the stack geometry/composition
and disorder level. On the other hand, the wire cannot be
too long since the visibility of gap closings will be strongly
suppressed if the length of the wire is more than several times
the normal-state localization length [88].

Assuming weak to moderate disorder, the optimal wire
length in our devices is 3 μm. This length choice also en-
sures that when a transport gap closing is observed, there is a
nonzero density of states in the bulk at zero energy which has
nonvanishing matrix elements to both leads so that nonlocal
conductance is above the noise floor [90].

Finally, the outer sections (underneath the left/right cut-
ter/plunger gates) must be significantly longer than the
coherence length of the parent superconductor in order to
prevent quasiparticle transport below the parent gap at full
depletion.

C. Material stack

The material stack of the topological gap device is op-
timized to produce a large topological gap. To achieve a
topological phase, the semiconductor stack needs to produce
a large spin-orbit coupling and a large nominal g-factor in
the confined 2DEG. In addition, the heterostructure should
provide a low disorder environment, typically parametrized
by high 2DEG mobility at low temperatures. Given the lack
of suitable insulating and lattice-matched substrates, the active
region is grown on an InP substrate employing a graded buffer
layer to accommodate lattice mismatch.

The active region consists of the Al superconductor, an up-
per barrier, the InAs quantum well, and the buffer. The upper
barrier layer plays a critical role in fine-tuning the coupling
between the superconductor and the 2DEG residing in the
quantum well. To drive the device into the topological phase,
B needs to be increased until the Zeeman energy μB|g�|B/2
exceeds the induced gap �ind. Here, g� is the renormalized
g-factor in the superconductor-semiconductor heterostructure,
which is given by g� = gSM �/(� + �) if we neglect the
g-factor of aluminum; a more general form of the renormaliza-
tion factor is discussed in Appendix A 1. For strong coupling
� between the wire and the Al strip, �ind would approach
the gap in the Al strip �Al and the electronic wave function
of the single occupied sub-band of the wire would have large
weight in the Al strip. In this case, |g�| would be renormalized
to small values. In such a case, μB|g�|B/2 would not approach
�ind until the magnetic field is very large (>2.5 T), close
to the critical in-plane field of the Al strip [27,59,94–96].
Conversely, if the coupling between the superconductor
and semiconductor were too weak, the maximum attainable
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topological gap would be small since it is bounded above by
�ind. Hence, the material stack must satisfy kBT � �ind <

�Al.
As we shall see in Sec. IV, the parent gap in the Al

strip is �Al ≈ 300 µeV (this is strongly dependent on the Al
thickness). For an optimized heterostructure, according to our
simulations of the device of Fig. 2(a), we expect 100 µeV <

�ind < 200 µeV, corresponding to an induced gap to parent
gap ratio of 0.33 < �ind/�Al < 0.67, and 4 < |g�| < 7.

Another function of the upper barrier layer is to separate
the quantum well states from disorder on the dielectric-
covered surface of the stack, thus enhancing the electron
mobility. The quantum well thickness is chosen to minimize
orbital effects from the magnetic field applied in the x direc-
tion, to allow electrostatic tuning, and to retain the desirable
properties of InAs, including optimally renormalized g�.

Rashba spin-orbit coupling in the wire, characterized by
the parameter α, enables superconductivity to coexist with the
magnetic field B. Although α does not determine the critical
field for the transition into the topological phase, it does con-
tribute to the size of the topological gap and the extent of the
topological phase in parameter space. The spin-orbit coupling
in a 2DEG heterostructure covered with the superconductor
is difficult to measure directly. Using weak antilocalization
measurements in shallow InAs 2DEGs (see, for example,
Ref. [97]), and typical values of the electric field (obtained
from simulations assuming band offset parameter measured
in Ref. [83]), we estimate that the Rashba spin-orbit coupling
is in the range of 5 to 15 meV nm.

In this paper, we present the results of measurements and
simulations of devices based on four different material stacks
satisfying the requirements given in this subsection. While
they all feature an InAs quantum well, there are important
differences in the quantum well width, barrier composition
and thickness, and dielectric. In Table I, we give the effec-
tive parameters that encapsulate the effect of these materials
changes, such as the the effective mass, g-factor, and spin-
orbit coupling. We will call these different materials stacks β,
δ, δ′, and ε.

D. Phase diagram of ideal devices

For the SLG and DLG device designs described in Sec. II B
and the material stacks described in Sec. II C, we have com-
puted the phase diagrams in the ideal disorder-free limit as
a function of the actual control parameters of the device, Vp

and B. This is to be contrasted with Eq. (1) and Fig. 1, which
contain the effective parameters μ and Vx. The bare spin-orbit
coupling in the semiconductor is taken to be α0 = 10 meV nm
in both the SLG-β and DLG-ε designs. The color scheme
in Fig. 4 is determined by the Pfaffian invariant [9,99] (see
Appendix A 4 for a brief description of this invariant). Darker
red corresponds to larger topological gap and darker blue
corresponds to larger trivial superconducting gap, as indicated
by the color scale on the right-hand side of the figure.

The red parabola in Fig. 1 has now become a sequence of
red slivers in the ideal phase diagrams of an SLG device built
on the β stack in Fig. 4(a) and a DLG device built on the
ε stack in Fig. 4(b). The red slivers are topological phases
with different numbers of occupied 1D sub-bands in the wire
[27,100]. When we zoom in on any one of these slivers,

FIG. 4. (a) The simulated phase diagram of the SLG device
design shown in Fig. 2(d) and the β material stack in the ideal
disorder-free limit. (b) The simulated phase diagram of the DLG
device design shown in Fig. 3(c) and the ε material stack in the
ideal disorder-free limit. Here, the Pfaffian invariant Q = +1 in the
trivial phase and Q = −1 in the topological phase. Hence, the color
scale indicates the size of the gap in the trivial (blue) and topological
(red) phases. The black curves indicate the phase transition where the
topological invariant changes sign. The axes B and Vp, the magnetic
field and plunger gate voltage, respectively, are the actual control
parameters of the device. Most of the phase diagrams in this paper
will similarly be in the (B,Vp) plane. This phase diagram is for a
wire of infinite length. The maximum topological gap in the lowest
sub-band is approximately 50 µeV. The data and scripts required to
reproduce this and other simulated figures are available in Ref. [98].

we see that it has the parabolic lobelike shape |g�|μBB/2 >√
μ2 + �2

ind that follows from Eq. (1). Here, the single-sub-
band topological phase is at Vp ≈ −1.35 V, and it has a larger
topological gap than when there are more occupied sub-bands.
Recall that one of the design criteria was that the single-sub-
band regime could be reached for moderate gate voltages;
this figure confirms that it is satisfied by this design. As we
increase Vp, thereby increasing the number of occupied sub-
bands, the effective cross-sectional area of the gate-defined
nanowire increases and, at some point, the orbital effect of the
applied magnetic field becomes very important. In the second
sub-band, an orbital-field-induced gap closing is visible at
B ≈ 3 T and Vp � −1.2 V. It occurs at B ≈ 2.5 T in the third
sub-band and at lower fields in higher sub-bands. In contrast,
in the lowest sub-band, an orbital-field-induced gap closing
does not occur over the relevant field range. (At fields higher
than 3.5 T, the Al parent gap can close, so an orbital-field-
induced gap closing would be a subleading effect anyway.)
Thus, in order to maximize both the accessible volume of the
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topological phase and its maximum gap, it is necessary to tune
the device into the single-sub-band regime.

There is very little difference between the SLG and DLG
designs in the bulk of the wire; the principal difference is in
the junctions, which have no effect on the ideal bulk phase
diagram. However, the ε stack has larger �ind and smaller
gSM so the topological phase occurs at higher B for this stack.
Hence, the DLG-ε phase diagram in the clean limit has a
lowest sub-band topological phase that is pushed to higher
fields, as may be seen in Fig. 4.

Within the lowest sub-band, the effective mass m∗, ef-
fective Rashba spin-orbit coupling α∗, effective g-factor g∗,
superconductor-semiconductor coupling �, and lever arm
dμ/dVp take the values given in Table I. As a result of the
projection to the lowest sub-band, the bare Rashba spin-orbit
coupling α0 is replaced by the effective parameter α given in
the table. The precise definition of the effective single-band
model governed by these parameters is given in Appendix A 1.

E. Disorder and uniformity requirements

We now discuss the level of imperfection that our device
designs can tolerate and still have a topological phase with
coherence length ξ (0) shorter than the wire length L = 3 µm.
See Appendix A 3 for a discussion of the coherence length
ξ (0) and other important length scales.

In our devices, there are many different sources of disor-
der, including geometric and charged disorder [27,38,101].
Even small local variations in any of a number of device
parameters can cause significant variations in the potential
experienced by the electrons along the wire. As we discuss
in Appendix A 1, we can extend the single-sub-band effective
model (A1) parametrized by the couplings given in Table I to
include disorder, leading to the Hamiltonian (A12). When the
various disorder mechanisms are projected into this single-
sub-band model, most of them can be characterized by the
quenched Gaussian disorder model [102] in which disorder
is represented by a random potential V (x) whose probability
distribution is approximately described by the second-order
cumulant defined in Eq. (A14). Both the strength of disorder
δV and its correlation length κ depend on each disorder source
in a manner that is highly dependent on the specific design
and must be calculated in a full three-dimensional model, as
we describe below. The designs in Figs. 2 and 3 have been
optimized to be as forgiving as possible by requiring that the
design minimize the projected disorder for fixed microscopic
disorder.

Even in such an optimized design, the topological phase
is impossible if the disorder strength δV exceeds a critical
value. For somewhat smaller disorder strengths, there will be
a topological phase, but the coherence length ξ (0) will be very
long. We need still smaller δV in order to have a topological
phase with ξ (0) < L. Hence, it is essential to understand and
minimize the sources of disorder that contribute to δV .

In the regime of interest, the low-density regime with
single-sub-band occupancy, charged disorder dominates
[103]. From an analysis of the density dependence of the
mobility of Hall bars, we conclude that charged disorder is
located primarily at the interface between the semiconductor
surface and the gate dielectric. Hall bar measurements allow

FIG. 5. There are Hall bars on the same chip as our topological
gap devices, visible at the right and left sides, respectively, of this op-
tical image. Both device types undergo the same processing steps, so
the charged defect density at the semiconductor-dielectric interface
n2D,int extracted from Hall mobility measurements is reflective of the
semiconductor-dielectric interface in the neighboring topological gap
device.

us to extract the average density of charged imperfections at
the semiconductor-dielectric interface, denoted by n2D,int , and
the lever arm dμ/dVp. This is illustrated in Appendix B. Each
chip studied in this paper has both topological gap devices
and Hall bars, as shown in Fig. 5, enabling us to extract the
average density of charged imperfections for each chip and to
assess the impact on topological gap devices of chip-to-chip
changes in the disorder level. Any impact that post-growth
fabrication has on the semiconductor-dielectric interface in
a topological gap device will be present in its partner Hall bar
as well since they are processed together on the same chip.
If any fabrication processes increase the density of charged
imperfections in a topological gap device, we will detect this
in the corresponding Hall bar.

We have optimized the device geometry with respect to
charged imperfections at the semiconductor-dielectric inter-
face by choosing the Al width as wide as possible while
still maintaining the ability to tune into the single-sub-band
regime. This keeps the active region in the InAs quantum
well as far as possible from charged disorder at the interface
between the semiconductor and the dielectric [see Fig. 2(d)].
(As we discussed in Sec. II C, the barrier layer plays a similar
role in separating charged disorder as much as possible from
the active region.) We use self-consistent electrostatics calcu-
lations [59,60] to find the disorder potential underneath the Al.
For realistic densities of charge defects n2D,int, we find the vari-
ance of the projected disorder potential and correlation length
to vary between δV ≈ 0.5–1.5 meV and κ ≈ 75–125 nm,
respectively. In Fig. 23, we show how δV depends on n2D,int

for the SLG and DLG designs of, respectively, Figs. 2 and 3
in the β, δ, or ε stacks.

From a transfer matrix calculation of ξ (0) for the model in
Eq. (A12), we can obtain the disorder strength δV at which
the minimum value of the coherence length ξ (0) begins to
exceed our device length. Figure 23 enables us to translate that
value into a target n2D,int . In particular we obtain for SLG-β
parameters that this occurs for n2D,int > 3×1012/cm2. The δ

and ε stacks have slightly different requirements as a result of
their stronger coupling to the superconductor � (which is still
within the required range of �ind/�Al). Hence, an initial target
for dielectric quality is n2D,int < 3× 1012/cm2. In this paper,
we show data from devices that are below and above this
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FIG. 6. The experimentally measured nonlocal conductance −GRL across sections of lengths L = 1, 2, 3.5, 4, 6.5, 8 µm in the same wire
(see Appendix C for a description of the device). (a) Shows the nonlocal conductance vs plunger and bias voltage for different length segments.
Increasing the length directly leads to a significantly reduced conductance. Around Vp = −1.185 V the conductance of the 1 µm wire becomes
larger than 0.05e2/h. The onset of conductance appearing around this gate voltage for multiple wire lengths suggests this signifies the onset
of the first sub-band (indicated by black dotted lines). Around Vp = −0.6 V the conductance becomes very high in all segments because the
entire 2DEG becomes conductive. In (b) an example of the localization length extraction is shown. The conductance is averaged over a small
bias window of ±20 µeV to improve signal quality. The localization length is then extracted by fitting the data to the expected value of the
typical conductance −GRL/

√
GRRGLL = A exp(−2L/�loc ) [104]. Fit parameters �loc and A are obtained by the linear fit of ln(−GRL ) vs L with

R2 describing the quality of the fit. We normalize the nonlocal conductance −GRL by local conductances
√

GRRGLL at zero bias to minimize the
contributions of the local effects. (c) Shows the extracted localization length as a function of plunger. We note that it is above 1 µm throughout
the measured range. We do not show points above 10 µm because the method cannot reliably determine �loc values greater than L.

target. The topological phase is present in the thermodynamic
limit even for relatively high disorder [103], but with large
ξ (0), which renders it unusable in an L = 3 µm wire. The
condition that ξ (0) < L is significantly more restrictive. As
we shall see when we consider the case of a single disorder
realization in Sec. II F, the condition that the gap not be too
small is also more restrictive.

We estimate that the corresponding bound on the peak
mobility (as a function of density) for Hall bar devices fab-
ricated on the same material stack is μ2D > 60 000 cm2/V s
at electron densities ne ∼ 0.6–0.8×1012/cm2. The 2DEGs
used in this paper have peak mobility in the range
60 000–100 000 cm2/V s in this density range. Additional de-
tails are in Appendix B.

In a similar fashion, we have optimized the design with
respect to other disorder mechanisms including variations of
the following parameters along the length of the wire: thick-
ness and dielectric constant of the oxide, barrier thickness
and composition, wire width, quantum well thickness, buffer
composition and thickness. We have extracted these disorder
parameters from measurements and used them in our simu-
lations of topological gap devices. We have also taken into
account disorder induced by imperfections in the substrate and
as well as disorder resulting from inhomogeneous supercon-
ductor growth.

We now discuss how we have verified that these design,
growth, and fabrication advances have led to superconductor-
semiconductor nanowires with long localization length, as
required for a topological phase. We have fabricated a vari-
ation on our topo gap device that has multiple junctions
defining segments of different lengths, as we explain in more
detail in Appendix C. This enables us to measure the nonlocal

conductance for different segment lengths L and, thereby,
extract the electron localization length �loc in the semiconduc-
tor. This device, shown in Fig. 27, was fabricated according
to the same process as the DLG-δ topo gap device. We
apply an in-plane magnetic field perpendicular to the wire
B ∼ 1 T to suppress the induced gap in all wire segments.
Consequently, there is a signal in GRL and GLR at low bias.
The junctions are operated in the open junction regime (see
Fig. 6). The typical nonlocal conductance decays with length
as ∼ exp(−2L/�loc). For fitting our measured conductances to
this form, we normalize it by the local conductances to reduce
the effect of the junctions. From this fit we find that our gate-
defined nanowires have localization length �loc � 1 µm in the
single-sub-band regime. Thus, the localization length �loc of
electrons in the wire underneath the Al is much longer than the
mean-free path of electrons in the Hall bar devices at a similar
density due to screening of charged imperfections by Al in
the former device type. This observation also confirms that
the Al-2DEG interface is of high quality (i.e., the deposition
of Al does not introduce new significant disorder mechanisms
in our topo gap devices) and, thus, corroborates our disorder
root-cause analysis discussed above.

Finally, we note, as a point of comparison to the pre-
vious works trying to realize topological superconductivity
in quasi-one-dimensional nanowires [38], that “bottom-up”
vapor-liquid-solid (VLS) nanowires have been measured with
field-effect mobilities of 103–104 cm2/V s in InAs [105,106]
and InSb [107] nanowires yielding localization lengths of
10–100 nm in the few sub-band regime. The origin of the
dominant disorder mechanisms in VLS nanowires has not
been established but is likely due to surface charged im-
purities. Thus, half-shell proximitized VLS nanowires are
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FIG. 7. Phase diagrams for a single disorder realization at δV = 0.3 and 0.9 meV, as a function of the magnetic field B and chemical
potential μ for an L = 3 µm wire with the ε stack single-band model parameters given in Table I. Blue represents the trivial phase and red is
the topological phase, which is identified by the Pfaffian invariant Q = ±1. Compared to the ideal topological phase in Fig. 1 and relatively
weak disorder effect in (a), the lobe in (b) moves to higher values of μ and splinters as a result of increasing disorder, consistent with Fig. 24(b).
A subset of the topological phase is highlighted in black, where the second lowest eigenvalue, representative of the gap, also has a high value.
This more restrictive notion of topological region is even more “splintered” and prone to finite-size effects and mesoscopic fluctuations.

likely to have a much shorter localization length than the
topo gap devices considered here. Field effect mobilities as
high as 44 000 cm2/V s have been observed in stemless InSb
nanowires [108]. It would be interesting to extract the corre-
sponding localization length underneath a superconductor for
such a nanowire by a measurement similar to that described
above and in Appendix C. This can determine if topological
superconductivity is possible.

F. Topological phase diagram for a single disorder realization

Even when a device satisfies the requirements explained
in the previous subsection and has a topological phase, dis-
order can cause the shape of the phase diagram to be rather
complicated. To gain a better understanding, it is helpful to
examine the phase diagram for a few representative disorder
realizations. In this section, we diagonalize the Hamiltonian
in Eq. (A12) and calculate the Pfaffian topological invariant
[9,99] for two independent disorder realizations. In any finite-
sized system, the disorder-driven phase transition between the
topological and trivial phases is rounded into a crossover.
Consequently, a topological phase can be found in the phase
diagram in some percentage of devices even for average dis-
order levels that exceed the critical value δVc obtained in
the thermodynamic limit. Conversely, some percentage of de-
vices will not have a topological region of the phase diagram
even for average disorder levels for which there would be
a topological phase in the thermodynamic limit. Although
disorder induces low-energy states (by creating domain walls
between topological and nontopological regions, for instance)
the density of such states may be low enough that an appre-
ciable fraction of even reasonably long devices may not have
any. Thus we can also characterize the phase diagram by the
spectral gap in the Q = −1 region, taken as the second-lowest
eigenvalue E1 of H (the lowest corresponds to the Majorana
zero mode pair splitting).

In Fig. 7, we show the phase diagrams of two different
simulated devices. Both have the DLG-ε design, but with
two different disorder realizations, one with δV = 0.3 meV

[Fig. 7(a)] and one with δV = 0.9 meV [Fig. 7(b)]. For weak
disorder, the lobe structure of the topological phase is pre-
served, and the spectral gap remains high over a large region
inside the lobe. For stronger disorder, mesoscopic fluctuations
are important, as we discuss in Appendix A 3. The parabolic-
shaped lobe of the topological phase of Fig. 1, as identified
by the Pfaffian topological invariant Q = −1, is splintered
into several disconnected regions of narrow range in μ and
larger extent in B. This effect is even more dramatic if we
additionally condition on a large spectral gap (black regions in
Fig. 7). We will call these long, narrow regions of topological
phase splinters of the single-sub-band lobe.

There precise shape of these splinters varies from one
disorder realization to the next. We expect such mesoscopic
fluctuations in our devices. In Appendices A 2 and A 3, we
will discuss disorder-averaged parameters, such as the local-
ization length ξ (E ).

G. Statement on confidential information

In summary, the principles behind the design of our devices
and material stacks are that they should enable three-terminal
transport and (1) be based on a 2DEG residing in a low-
defect quantum well; (2) have a charged defect density n2D,int

at the semiconductor-dielectric interface that is less than
3×1012/cm2, as measured on a Hall bar on the same chip;
(3) allow tuning to the lowest sub-band and full depletion of
the wire; and (4) have an induced gap to parent gap ratio in the
lowest sub-band that satisfies 0.33 < �ind/�Al < 0.67. Hall
bar measurements can be used to measure progress towards
satisfying requirements (1) and (2); while zero-field transport
measurements of topological gap devices (described in the
next section) can be used to determine when (3) and (4) are
satisfied. We present data from such measurements which
directly verifies that the β, δ, δ′, and ε material stacks in either
SLG or DLG designs fulfill them.

The barrier thickness and composition, quantum well
thickness, dielectric composition and deposition method, and
Al strip width are critical factors that determine whether a
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device meets these prerequisites. The details of these design
parameters and fabrication methods are Microsoft intellectual
property that we cannot disclose. However, we have explained
the principles by which we determined these parameters and
processes in this section (particularly Secs. II B, II C, and II E).

The following are some of the key ideas. We grow our
superconductor-semiconductor heterostructure by molecular
beam epitaxy on an insulating InP substrate. There is a graded
buffer layer that modifies the lattice constant while preventing
extended defects from reaching the active region [109]. In this
regime, charged defects at the interface to the dielectric are the
primary source of disorder. We have engineered the electron
wave function in order to minimize the effective disorder level
while maintaining a near-optimal induced gap in the semicon-
ductor. In particular, we have varied the thickness of the InAs
quantum well, tQW, over the range 7 nm < tQW < 11 nm, and
we have varied the thickness of an InAlAs barrier, tB, over
the range 4 nm < tB < 12 nm. These parameters have been
optimized within these windows to maximize the distance
from the active region to the dielectric while simultaneously
targeting a gap ratio �ind/�Al ≈ 0.5. We have chosen InAs
for the quantum well because (a) its renormalized g-factor and
spin-orbit coupling can reach the minimum required values
of 4 and 4 meV nm, respectively; (b) there are known lattice-
matched barriers; and (c) it has a larger temperature window
for subsequent processing steps than alternative materials. We
have chosen aluminum for the superconductor because it has
demonstrated 2e-periodic Coulomb blockade peaks, which is
essential for the qubits that we discuss in Sec. VI, and it
has a superconducting gap that is known to increase with
decreasing thickness. The aluminum strip was chosen to be
as wide as possible (in order to keep defects in the dielectric
as far as possible from the active region in the quantum well)
while still allowing full depletion of the wire at plunger gate
voltages Vp > −3 V. Meanwhile, we have varied dielectric
deposition conditions in order to find a process point at which
n2D,int < 3×1012/cm2. Our devices can be reproduced through
similar optimization steps, combining simulation and experi-
mentation.

All of the key material and design parameters feed into the
effective parameters given in Table I, together with δV and κ .
They define the projected single-sub-band model in Eq. (A12)
from which our simulations of bulk properties of our devices
can be reproduced. Any device that replicates our design and
material stack will have similar effective parameters.

III. TOPOLOGICAL GAP PROTOCOL

The goal of the TGP is to identify whether there are regions
in the experimental parameter space that show signatures
consistent with a topological phase. The full source code of
the TGP and raw data sets are available in Ref. [98]. The
device’s outer sections are kept in the trivial superconduct-
ing phase by tuning their densities with the right and left
plunger gates. In the topological phase of the wire, MZMs
are localized at the boundaries between the topological and
trivial sections [see Fig. 2(c)]. Provided that L is smaller than
or, at least, not too much larger than the localization length
ξ (�T ) (see Appendix A 3), there will also be an observed
nonzero bulk transport gap. When this condition is satisfied,

FIG. 8. Schematic illustrations of the current paths (blue arrows)
that contribute to (a) GRR, GLL and (b) the nonlocal conductance GLR

discussed in Sec. III.

a nonzero above-gap nonlocal conductance is observable, en-
abling an identification of the gap, as we discuss further in
Appendix A 3. In the TGP [8], the presence of MZMs and a
bulk transport gap is detected by measuring the differential
conductances(

GLL GLR

GRL GRR

)
=

(
dIL/dVL dIL/dVR

dIR/dVL dIR/dVR

)
(2)

as a function of Vp and B as well as the voltages Vrc,Vlc

controlling the tunnel junction transparencies, and the bias
voltages Vb = VR,VL, which can be increased in order to tun-
nel current into states of higher energies. The currents and
voltages IR, IL,VR,VL are illustrated in Fig. 8. We use the
cutter gates to open and close the junctions; when Vrc is more
negative, the junction is more closed, and similarly with Vlc.
We discard all devices in which one of the junctions cannot
be completely closed at a pinch-off voltage > − 3 V. Even
among devices that pass this basic health check, there is
considerable device-to-device variation in the pinch-off volt-
ages and, more generally, in the relation between Vrc, Vlc and
the conductances through the junctions. This is, presumably,
due to the different disorder configurations in the different
junctions; these differences have a large effect because the
junctions are depleted, leaving charged impurities unscreened,
unlike in the bulk of the wire where the Al strip can suppress
the effects of charged impurities via screening.

We want to vary the cutter gate voltages so that the local
electrostatic environments at the two junctions change by
enough to change the energy of bound states that are acci-
dentally at zero energy for one cutter gate configuration. But
since the cutter gate voltage change required to open or close
a junction varies significantly from one junction to another
as a result of disorder, we cannot simply choose the same
sequence of Vrc, Vlc values for each device. Instead, we use
the above-gap conductance GN at B = 0 and a bias voltage of
500 µV as a measure of the junction transparencies. In each
device, we find sequences of cutter gate voltages Vrc, Vlc for
which GN at both junctions take values between ≈0.1e2/h and
≈e2/h. They are slightly different in each device, but they
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FIG. 9. The experimental local and antisymmetrized nonlocal conductances for device A at zero magnetic field as a function of plunger
gate voltage Vp and bias voltage. The antisymmetrized nonlocal conductances in (c) and (d) are suppressed above the parent Al gap, which is
indicated by horizontal dotted lines. They are nonvanishing down to small bias for Vp more positive than ≈− 0.9 V, which indicates that there
is conduction through the region of the 2DEG that is not underneath the Al strip. This region of the 2DEG is depleted for Vp more negative
than approximately −0.9 V. The antisymmetrized nonlocal conductances vanish for plunger gate voltages below Vp ≈ −1.27 V, which we
identify as the bottom of the lowest sub-band. For −0.9 V � Vp � −1.27 V, the induced gap is indicated by a dashed curve which terminates
in dashed vertical lines at the depletion voltage. The parent gap is visible in the local conductances in (a) and (b), but it is more challenging to
identify the induced gap due to sub-gap states in the junctions.

always cover a substantial fraction of this range. When we say,
as a shorthand, that we are varying the junction transparencies,
we mean that we vary Vrc, Vlc in this manner.

In the tunneling regime (i.e., for GN < e2/h), the current
paths contributing to GRR, GLL are illustrated in Fig. 8(a). In
this regime, GRR and GLL directly measure the local density of
states in the wire at the boundaries between the middle and,
respectively, the right and left sections. ZBPs are determined
by the condition that −d3IR/dV 3

R exceeds the noise level and
similarly for the left junction, i.e., the second derivative of the
dI/dV curve is more negative than the noise level. ZBPs in
GRR and GLL in the tunneling regime indicate the presence of
zero-energy states in the wire with sufficient tunneling matrix
elements to the leads, consistent with MZMs but also with
trivial zero-energy Andreev bound states. A zero-energy state
(either MZM or trivial ABS) at the right junction will be
manifested as a ZBP in GRR and similarly for a zero-energy
state at the left junction and a ZBP in GLL. Trivial ABS are not
generically stable with respect to local perturbations whereas
well-separated MZMs are. Therefore, the ZBP stability crite-
rion, discussed below, allows one to better identify the region
of interest.

The current path contributing to GLR is illustrated in
Fig. 8(b); GRL is determined by the reverse path. For an in-
tuitive understanding of GLR and GRL, we first note that in
the thermodynamic limit of the wire, the clean limit, and the
tunneling limit of both junctions, a current injected at bias
voltage above the Al parent gap will flow through the Al strip
to ground via the contacts at the ends of the device unless it
relaxes to energies between the induced gap and the parent
gap. Hence, at bias voltages above the Al parent gap, GRL

and GLR are strongly suppressed and are nonzero only as a
result of these weak relaxation processes [88,90,110]. At zero
temperature, in the thermodynamic limit of the wire, the clean
limit, and the tunneling limit of the junctions, current cannot
be injected into the wire at bias voltages below the induced
gap, except by Andreev processes, which inject supercurrent
that also flows to the grounded contacts at the ends of the
device. Now consider a finite-length disordered wire. At bias
voltages at which the localization length ξ (eV ) is less than

the length of the wire, GRL and GLR are strongly suppressed
and are nonzero only as a result of nonzero temperature and
finite ratio L/ξ (eV ). (In an infinite wire, GRL and GLR would
vanish at all bias voltages because all states are localized,
except precisely at the transition. For a further discussion, see
Appendix A 3.) Consequently, the highest bias voltage below
which GRL and GLR are nearly vanishing (in a sense that we
make more precise below) can be interpreted as the transport
gap �tr that we define in Appendix A 3. As we discuss in
Appendix D 1, we perform this gap extraction with the parts
of the nonlocal conductances that are antisymmetric in bias
voltage, A(GRL ), A(GLR ):

A[(GRL(Vb)] ≡ [GRL(Vb) − GRL(−Vb)]/2 (3)

and similarly for GLR.
The high-dimensional nature of the parameter space that

is explored by the TGP makes it prudent to narrow the mea-
sured parameter range. We explained above how the range
of junction transparencies is limited. Meanwhile, the param-
eter range of Vp is chosen to be close to the bottom of the
first sub-band. When the chemical potential is below the first
sub-band, the wire is fully depleted. The depletion point is
identified by scanning the nonlocal conductance as a function
of bias and Vp. This can be done at B = 0 or at nonzero B,
with B below the critical field of the superconductor, where
the signal is generally larger. Recall that, as noted above,
the nonlocal conductances are essentially zero outside the
range of bias voltages between the induced and parent gaps,
except for finite-size effects, thermal activation, and relaxation
effects. Hence, full depletion of the wire causes the nonlocal
conductance at bias voltages below the Al gap to drop below
the noise floor. We use this depletion point to identify the
single-sub-band regime.

In Fig. 9, we show the four elements of the experimentally
measured conductance matrix as a function of bias voltage Vb

and plunger gate voltage Vp at zero magnetic field in one of our
devices, which we label device A, to illustrate how the deple-
tion point is identified. As may be seen from Figs. 9(c) and
9(d), the antisymmetrized nonlocal conductances are small
above the parent gap �Al = 295 ± 8 µeV, which is indicated

245423-12



INAS-AL HYBRID DEVICES PASSING THE … PHYSICAL REVIEW B 107, 245423 (2023)

by horizontal dotted lines in Figs. 9(c) and 9(d). The anti-
symmetrized nonlocal conductances are nonvanishing down
to small bias for Vp � −0.9 V, which indicates that there is
conduction through 2DEG regions not contacted by the Al
for these plunger gate voltages. For Vp more negative than
≈ − 0.9 V, these 2DEG regions are depleted, and the induced
gap opens up. As discussed previously, the antisymmetrized
nonlocal conductances are large between the induced and par-
ent gaps, are suppressed above the parent Al gap, and are very
strongly suppressed below the induced gap. As Vp is decreased
further, the induced gap increases, eventually reaching its
maximum measured value of �ind = 129 ± 12 µeV. At Vp ≈
−1.25 V, the antisymmetrized nonlocal signal drops sharply
while local conductances remain large. For more negative Vp,
the antisymmetrized nonlocal signal is very small, and there is
no longer a visible bias range between the induced and parent
gaps. This is interpreted as full depletion of the semiconductor
below the Al strip. The single-sub-band regime occurs just
before wire depletion.

In summary, the TGP makes the parameter space of our
devices manageable by focusing on the most favorable region:
Vp near the bottom of the lowest sub-band; B from zero up
to 2.5 T; and a range of junction transparencies GN between
≈0.1e2/h and ≈e2/h.

The steps of the TGP are divided into two stages. Stage 1:
(1) From an analysis of GRR and GLL, identify ZBPs at each end
of the wire that are stable to variations of the junction trans-
parencies and variations in local junction potential (which
are controlled by Vrc, Vlc in the manner discussed above).
(2) Find clusters of points in the B-Vp plane where there are
stable ZBPs at both ends of the wire. These clusters and their
surrounding neighborhoods define the regions of interest ROI1

that are the focus of Stage 2. If there are no such clusters, the
device fails Stage 1.

Stage 2: (3) Focusing on smaller (B,Vp) ranges containing
ROI1s and restricting to cutter gate voltage pairs for which
the junction transparency is approximately the same at both
ends, confirm the existence of stable zero bias peaks in GRR

and GLL and recover the clusters of points in the B-Vp plane
where there are stable ZBPs at both ends of the wire. This step
is important when there is a drift in Vp between Stages 1 and
2. The cutter voltages can either be set such that the junction
transparencies are set on average to target conductance values,
or compensated as a function of Vp such that the transparencies
are stabilized to the target values. (4) Use A(GRL ) and A(GLR )
to determine the bulk energy gap as a function of (B,Vp) for
each pair of cutter gate settings. (5) For each pair of cutter gate
settings, find ZBP clusters identified in step 3 whose interiors
are gapped and whose boundaries are gapless. We will denote
them by CA

i where i is a index for the pair of cutter gate
settings and A is an index that distinguishes different gapped
ZBP clusters with gapless boundaries that might occur for the
same pair of cutter gate settings. (6) Find the sets of clusters
T in the B-Vp plane consisting of CA

i that overlap for differ-
ent cutter gate settings. To be more precise, we define T ≡
{CA

i | CA
i ∩ CB

j �= ∅ for some j �= i and
⋃

CA
i connected}. The

device passes the TGP if there is a T such that there is a
CA

i ∈ T for a number of cutter gate settings i that exceeds some
threshold, as we make more precise in Appendix D 2. In this
case we define the region of interest ROI2 = ⋃

CA
i ∈T CA

i . Note

that for a given device, there can be several T ’s and ROI2s.
We will call the clusters CA

i ∈ T “subregions of interest SOI2

belonging to a region of interest ROI2.”
Note that Stage 2 of the TGP typically uses 5 or fewer

cutter gate values, chosen so that the above-gap conductance
at each junction varies by ∼e2/h between the most closed
and most open configuration. Stability of ZBPs to variation
over a denser set of cutter gate values is neither necessary nor
sufficient for passing the TGP. Further details are discussed in
Appendix D.

There are a number of important measurement complexi-
ties that we discuss in Appendix D 1. The TGP is formulated
with several thresholds which we explain in Appendix D 2: the
minimum percentage of cutter gate settings for which a ZBP
must be present in order to be considered stable, denoted by
(ZBP%)th; the minimum percentage of the boundary of a ZBP
cluster that must be gapless in order for the whole boundary to
be considered gapless, denoted by (GB%)th; the conductance
value below which we consider it to be effectively zero up to
finite-size effects, denoted by Gth; and the minimum percent-
age of cutter gate settings for which an overlapping SOI2 must
be present in order to form an ROI2, denoted by (Ci%)th.

The TGP captures the key physics of topological supercon-
ductivity because it requires a device to show stable ZBPs at
both ends and also a bulk gap closing and reopening. However,
we can make a much stronger quantitative statement about its
reliability by testing it on simulated devices. We simulated
349 devices of different designs, material stacks, and disor-
der levels and applied the TGP to transport data from these
devices. To test its reliability, we compared the ROI2s located
by the TGP with the “scattering invariant” [111], a topological
index that is defined for open systems (see Appendix A 4 for
a brief description of this invariant). When the topological
index is −1 in some region of the phase diagram, the region
is topological; when it is +1, the region is trivial. However,
trivial regions of the phase diagram can exhibit relatively
stable ZBPs in their transport data, and the TGP was designed
to avoid misidentifying such regions as topological.

We classify ROI2s as true positives (TP) if they contain any
region with nontrivial topological index and as false positives
(FP) otherwise. The false discovery rate (FDR) is the proba-
bility that an ROI2 is trivial:

FDR ≡ P( ROI2 is trivial)

= lim
N→∞

FP/(FP + TP), (4)

where N is the total number of devices. In essence, the FDR is
the probability that if a device passes the TGP then the ROI2

that it identifies has a completely trivial explanation, such
as a trivial ABS. We estimate the FDR from the TP and FP
numbers obtained from a large, but finite, number of simulated
devices. As N → ∞, the ratio FP/(FP + TP) approaches the
FDR. For finite N , the best that we can do is estimate upper
and lower bounds on the FDR. We use the Clopper-Pearson
confidence interval at the 95% confidence level to estimate
these bounds.

Our results are shown in Table II. Since we found no false
positives, the confidence interval for the FDR is between zero
and the upper bound that we list in the rightmost column. We
find that if a device passes the TGP, there is a <8% probability
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TABLE II. Statistics of TGP results for simulated transport data
from SLG-β and DLG-ε devices with 50 different disorder realiza-
tions for each of the average disorder strengths given in the first
column. Devices with n2D,int � 1012/cm2 typically have multiple dis-
tinct ROI2s, so we have more total ROI2s for low disorder. The listed
range of FDR values is the confidence interval at the 95% confidence
level.

Design, stack n2D,int [1012/cm2] TP FP FDR

SLG-β 1.0 244 0 <1.5
2.7 46 0 <7.7
4.0 45 0 <7.9

DLG-ε 0.1 125 0 <2.9
1.0 97 0 <3.7
2.7 67 0 <5.4
4.0 66 0 <5.4

that the ROI2 that it finds does not contain a topological phase,
provided that the simulated data are drawn from the same
probability distribution as the data produced by real devices.
For the DLG-ε design, the probability is <6%. We simulated
several different disorder levels to investigate whether the
TGP is more likely to give false positives when disorder is
higher. Our results indicate that the TGP is reliable over the
entire range n2D,int = 0.1–4×1012/cm2, which is the range of
charged disorder levels in the measured devices discussed in
Sec. IV.1 Similarly, the differences between the SLG-β and
DLG-ε stacks and designs have no effect on the accuracy of
the TGP. The small dependence of our FDR estimates on dis-
order level and design that may be seen in Table II are entirely
a consequence of the different numbers of ROI2s that were
found at different disorder levels. Further details are given in
Appendix E. As we discuss in Sec. V, the statistical properties
of the ROI2s that we find in our simulations agree with the
corresponding experimental values, thereby further validating
the simulation model used to estimate the FDR. This analysis
addresses open questions regarding the reliability of the TGP
[112].

IV. EXPERIMENTAL DATA

A. Measurements of device A

In the remainder of this paper, we focus on measure-
ments of devices such as the one shown in Fig. 2. In this
section, we focus on data from device A, which is a 3 µm
long SLG device built on a β stack. We discuss three ex-
perimental measurements from this device. The raw data are
available in Ref. [98]. Measurement A1 was taken in one
dilution refrigerator while measurements A2 and A3 were
taken in a different cooldown of device A in a different di-
lution refrigerator. The measured zero-field superconducting
gap in the Al strip is �Al = 295 ± 8 µeV and the maximum
induced gap at zero B field is �ind = 129 ± 12 µeV, which

1Note that the threshold Gth depends on the level of disorder in the
system and is taken differently at 0.1×1012/cm2 charged disorder
compared to the other cases. See Appendices E 2 and E 3 for details.

indicates that the induced gap to parent gap ratio �ind/�Al =
0.44 is well within the desired range.2 The effective charged
impurity density at the interface with the dielectric is n2D,int =
2.7×1012/cm2, as is discussed in Appendix B. This value
satisfies the specification explained in Sec. II E, which is based
on the assumption that the average charged impurity density
at the dielectric-semiconductor interface in the Hall bar is the
same as at the dielectric-semiconductor interface in a topolog-
ical gap device [the boundary between light blue and gray on
either side of the Al strip in Fig. 2(d)] on the same chip. The
critical field, Bc, for the thin Al strip is >4.5 T for magnetic
fields in the direction of the strip. The single-sub-band regime,
as determined from the nonlocal conductance in the same
manner as in Fig. 9, is reached at Vp between −1.2 and −1.4 V
(depending on the cooldown). This is consistent with our
simulations for device A (see Fig. 4). The base temperature
in our measurements is ∼20 mK and, using NIS thermometry
[113], we measured an electron temperature Te < 40 mK.

1. TGP Stage 1

We begin by finding the single-sub-band regime, following
the method discussed in Appendix D 1. The nonlocal signal
below the Al parent gap vanishes for Vp < −1.18 V, which
we interpret as the point at which the wire is fully depleted.
We focus our Stage 1 scans on a Vp range of 30 mV above this
value.

In Figs. 10(a) and 10(b), we show the cutter gate fraction
for ZBPs at, respectively, the left and right junctions as a
function of B and Vp. The black lines in Figs. 10(a) and 10(b)
enclose the regions in which the cutter gate fraction for ZBPs
at the left or right junction is greater than >70%. Finally, in
Fig. 10(c), we show the fraction of junction transparencies at
which there are ZBPs at both junctions, plotted as a function
of B and Vp. The black line indicates the part of the phase dia-
gram where the cutter gate fraction for ZBPs at both junctions
is >70%.

Stage 1 data were taken for 21 different cutter gate voltages
at each junction, chosen such that GN at each junction is in
the range 0.01 to 0.85e2/h. These 21 cutter voltages were
found by the following procedure including a calibration mea-
surement prior to the TGP Stage 1 (TGP1) measurement. 21
targets for GN were chosen as equidistant points in the range
0.01 to 0.85e2/h. The change of local potential corresponding
to this conductance change is estimated to be a few meVs.
In the calibration measurement, the cutter voltage for each
junction yielding each of the 21 targets (within ± 0.02e2/h)
was recorded at 61 equidistant points along the plunger volt-
age range Vp to be used in TGP1. For each GN target, the
median cutter voltage along the plunger voltage axis is cho-
sen as the cutter voltage for that GN target. This procedure
returned the 21 cutter voltages for each junction. Each of
the 21 cutter voltage pairs used in TGP1 is a pair in which
each of the voltages is drawn with no replacement from this
list.

In Stage 1, we find (B,Vp) values at which there are ZBPs
at both junctions for more than 15 out of 21 (Vlc,Vrc) pairs or,

2For the extraction of the zero-field induced gap, see Fig. 36.
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FIG. 10. Experimental ZBPs for device A, measurement A1, Stage 1 identifying ROI1 for Fig. 11. (a) The cutter gate fraction for which
there is a ZBP at the left junction as a function of B and Vp. (The color scale is at the far right.) (b) The cutter gate fraction for ZBPs at the
right junction as a function of B and Vp. (c) The cutter gate fraction for ZBPs at both junctions. In all three panels, regions for which the cutter
gate fraction for ZBPs is at least 70% are surrounded by black lines. The cutter gate fractions for ZBP are defined in the third paragraph of
Sec. IV A 1. ZBPs that occur at only one junction or for a small cutter gate fraction are likely to be due to trivial Andreev bound states. The
data and scripts needed to reproduce this and other experimental figures are available in Ref. [98].

in other words, for which the cutter gate fraction for ZBPs
at both junctions is >70%. Clusters of such points are the
candidate regions of topological phase yielded by Stage 1 of
the TGP, dubbed ROI1 in Ref. [8].

There are several key features in Fig. 10 worth em-
phasizing. First, we expect that the topological phase in
proximitized nanowires should have a lobelike shape
|g�|μBB/2 >

√
μ2 + �2

ind in the absence of disorder. As a
result of disorder, we expect the lobe to be splintered, as
shown in the simulations in Fig. 7. In Stage 1 data from
simulated device R1, this manifested as splintered regions in
which there are stable ZBPs at both ends of the device, as
may be seen in Fig. 30. The 30 mV field of view in Fig. 10
corresponds to a single lobe, which we identify as the lowest
sub-band according to the method discussed in Appendix D 1.
The structure that is visible in the phase space locations of
stable ZBPs at the left and right junctions and, especially, in
ROI1 resembles the splintering of the lobe.

We have observed very similar ROI1s in several devices
(such as devices B, C, D, and E). In more disordered devices
(such as device F, which is discussed in Sec. IV B), ZBPs are
scattered throughout phase space, and there is no structure,
which suggests a nontopological phase of matter.

The data are reproducible between successive measure-
ment runs on the same device, as we show in Sec. IV A 3. The
system is very stable, provided that Vp is varied by 30 mV or
less. If the voltage is varied by more than 100 mV, features
shift in Vp but we can recover the same ROI1. If a device idles
for approximately a week near an ROI1, we find that voltages
drift by at most a few mV, as we will see when we compare
measurements A2 and A3.

We emphasize that the main goal of Stage 1 is to identify
promising regions in parameter space for measurements of
both the local and nonlocal conductances over a range of bias
voltages, which are the focus of Stage 2.

2. TGP Stage 2: Measurement A1

In Stage 2, we focus on the regions of the B-Vp plane
where there are clusters of points with stable ZBPs at both
junctions. We map out the full conductance matrix Eq. (2)
as a function of B, Vp, Vlc, Vrc, and, in addition, Vb. Since
we are now exploring a higher-dimensional parameter space,
we restrict the Vp sweep to the vicinity of ROI1 identified
in Stage 1, which is typically δVp ≈ 5–15 mV. We further
restrict the parameter space by taking scans for 3–5 pairs of
cutter gate settings (rather than the >20 pairs of Stage 1). For
each pair of cutter settings, the cutters are compensated as a
function of Vp to achieve the target GN values at each side.
In the measurement of device A displayed in Fig. 11, there
were 3 cutter gate pairs (Vlc(Vp),Vrc(Vp)). These cutter gate
settings correspond to GN targets of 0.3, 0.5, and 0.7e2/h at
both junctions. In Fig. 11, we show data for the representative
cutter gate settings for which GN = 0.3e2/h for both junctions
and the discussion below focuses on these data. Qualitatively
similar observations hold for the other two settings.

Since, as was previously mentioned, there is typically a
small voltage drift between Stages 1 and 2, we start the analy-
sis of the Stage 2 data by determining the regions with stable
zero-bias peaks anew. We call the ZBPs stable if they are
present for at least 2 out of 3 cutter gate settings. In Figs. 11(c)
and 11(d), we illustrate ZBPs for our representative cutter
gate setting by showing GLL and GRR for Vp = −1.171 75 V.
In Fig. 11(b), we see that the corresponding horizontal line
passes through a region with stable ZBPs, indicating that
these ZBPs are present at least one other cutter gate setting
as well. The GLL and GRR data shown in Figs. 11(c) and 11(d)
are displayed as “waterfall” plots in Figs. 11(g) and 11(h),
which is an alternate but equivalent method of representing
the same data. We reemphasize that the conductances GRR,
GLL are not topological invariants and are not expected to have
quantized values at nonzero temperature and nonzero junction
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FIG. 11. (a) The experimental phase diagram of device A (measurement A1) in the color scheme shown at the left. The stability of ZBPs
is determined by varying the cutter gates so that for both junctions GN takes the values 0.3, 0.5, and 0.7e2/h (cutter pairs #0, #1, and #2,
correspondingly). The boundary of the SOI2 is interpreted as a phase transition line, consistent with a visible gap closure along 78% of it.
(b) The experimental phase diagram, showing trivial/topological phases, which the TGP identifies with the exterior/interior (q = ±1) of the
SOI2. The color scale shows the size of the trivial (positive sign) or topological (negative sign) gap. The protocol assigns a maximum topological
gap �max

topo = 23 µeV. Measured local and antisymmetrized nonlocal conductances along the horizontal line in (b) at Vp = −1.171 75 V: (c) GLL,
(d) GRR, (e) A(GRL ), (f) A(GLR ). The SOI2 lies between the vertical lines. Panels (g)–(j) are “waterfall” plots representing the same measured
data. The data shown in (c)–(j) were obtained for GN ≈ 0.3e2/h for both sides (we call it cutter pair #0). The black curves in (e) and (f) and
the dots in (i) and (j) are not guides to the eye; they indicate where the nonlocal signal drops below a threshold value, as described in the text.
The analysis of cutter pairs #1 and #2 is shown in Figs. 33 and 34.
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FIG. 12. “Waterfall” conductance plots of (a) GLL, (b) GRR, (c) A(GRL ), (d) A(GLR ) as a function of the corresponding bias and plunger gate
voltage Vp for device A (measurement A1). The data are the B = 1.66 T vertical line in Fig. 11(b). ZBPs and extracted gap points corresponding
to SOI2 are shown in black.

transparency. So a ZBP, no matter how stable or well quan-
tized, cannot prove that the system is in a topological phase.
Conversely, the existence of a topological phase in a device is
not disproven by a ZBP that has a small magnitude, such as the
ZBPs at the left junction in Figs. 11(c) and 11(g). In the TGP,
we classify ZBPs by their stability to parameter changes. In
particular, ZBPs that are stable with respect to changes of the
cutter gate voltages are a mandatory requirement of the TGP.
We give an example from a Stage 2 measurement in Fig. 15.

Next, we use bias scans of the nonlocal conductances
A(GRL ), A(GLR ) to determine the bulk transport gap at each
point in the phase diagram. We illustrate this in Figs. 11(e)
and 11(f), where we show A(GRL ) and A(GLR ) as a function of
B at the Vp = −1.171 75 V horizontal line in Fig. 11(b). The
black curves in Figs. 11(e) and 11(f) show the transport gap
extracted from, respectively, GRL or GLR as a function of B for
this Vp value. The black curves are determined according to
the procedure explained in Appendix D 1. The transport gap
is obtained by taking the minimum of the values extracted
from A(GRL ) and A(GLR ). There is a clear bulk transport gap
closing and reopening visible in A(GRL ) at B ≈ 1.5 T. The gap
remains open from B ≈ 1.5 T to B ≈ 2.5 T.

We further illustrate the behavior of A(GRL ), A(GLR ) by tak-
ing a vertical cut through the B-Vp plane. In Fig. 12, we show
waterfall plots of local and nonlocal conductances as a func-
tion of Vp at fixed B = 1.66 T. The black dots in Figs. 12(c)
and 12(d) indicate the bulk transport gaps extracted from GRL

and GLR. A gap closing and reopening is clearly visible in
these plots. We emphasize that these cuts through the phase
diagram are a very small sample of the data comprising Stage
2 of measurement A1.

While these illustrative cuts are highly enlightening, they
are not the primary goal of Stage 2 of the TGP, which is
to derive an experimental phase diagram from the measured
conductance matrix as a function of B, Vp, Vlc, Vrc, and Vb. The
TGP yields the experimental phase diagrams in Figs. 11(a)
and 11(b) for our representative cutter gate setting. All three
cutter gate settings yield similar phase diagrams. The color
scheme in Figs. 11(a) and 11(b) is the same as in the simulated
phase diagrams in Figs. 31(a) and 31(b). The most salient
feature of Figs. 31(a) and 31(b) is the presence of an SOI2. In
this region, there are stable ZBPs at both ends of the device,
and there is a nonzero bulk transport gap; 78% of the boundary
of this region in the B-Vp plane is gapless. Device A passed the
TGP.

The crucial point of the TGP is to not rely on a single
feature to identify a topological phase, but instead to rely on
the totality of the data to provide evidence for the observation
of a topological phase. Indeed, each pixel in Fig. 11(b) is
determined by conductance data in a neighborhood of points
around that pixel and for a range of cutter gate settings.

From A(GRL ), A(GLR ), we infer a bulk gap closing and
reopening, which is a signature of a second-order phase tran-
sition. It is important to distinguish such behavior in the
nonlocal conductances A(GRL ), A(GLR ) from apparent gap
closings/reopenings in the local conductances GRR, GLL, which
could easily be the motion of a local state towards zero energy,
rather than a bulk phenomenon.

This phase transition line separates the high-field gapped
phase from the gapped trivial superconducting phase that is
present at low fields. It does not quite surround the high-field
gapped phase: 78% of the boundary shows a gap closing in
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A(GRL ), A(GLR ). This surpasses (GB%)th; it is similar to the
percentage of the boundary of the SOI2 that is gapless in
the simulated data of Fig. 31 and is typical for simulations
of this device design and disorder level. Consequently, we
believe that the second-order phase transition line that sur-
rounds 78% of our putative topological phase is, in fact, part
of an unbroken transition line surrounding the entire phase.
As noted in our discussion of (GB%)th in Appendix D 2, one
possibility is that the gap closing is not visible along 22% of
the boundary of the SOI2 due to a suppression of the signal by
disorder/nonuniformity while another is that the topological
region is larger than the SOI2. Indeed, for the cutter gate
setting shown in Fig. 11, there are ZBPs at both junctions up
to B = 2.5 T.3 However, at the other cutter gate settings, there
is no visible ZBP at the left junction.

The high-field gapped phase is characterized by stable
ZBPs at both ends of the wire, which is consistent with the
topological phase. For some Vp values, the ZBPs appear before
the gap reopens, including at the Vp = −1.171 75 V horizon-
tal line in Fig. 11(b). This is consistent with a scenario in
which quasi-MZMs [46–51] are precursors to the transition
into the topological phase, which is frequently seen in simu-
lations.

The maximum topological gap is �max
topo = 23 µeV for this

cutter gate setting.4 Over the SOI2, which has an extent of
δB ≈ 500 mT, δVp ≈ 1.5 mV, the extracted topological gap
increases from zero to �max

topo in such a way that its median
value over the region within the black line in Figs. 11(a) and
11(b) is 20 µeV. From the phase diagram in Figs. 11(a) and
11(b), we see that the lowest field at which the gap closes
near the SOI2 is ≈0.8 T, which implies an effective g-factor
of at least |geff | ≈ 5.6. Here, we define |geff | ≡ 2�ind/μBBmin,
where Bmin is the lowest field at which the gap closes.5 This
value of |geff | is close to the optimal value for this device
design and material stack.

The induced gap (and all structures associated with its
closing/reopening) decreases rapidly when the magnetic field
is rotated away from the direction of the wire, as expected.
The transition to the topological phase should become more
smeared as the temperature is increased, but it is difficult to
study this systematically due to voltage drifts.

Comparing the experimental data in Fig. 11 to the sim-
ulated data in Fig. 31, we note both the qualitative and
quantitative similarity between the phase diagrams. In both
simulated and measured data, there are gap closings at similar

3At the left junction, this ZBP is small, but above the measurement
resolution, as may be seen in Figs. 11(c) and 11(g).

4The extracted gap can depend on the cutter gate setting. Stability
of the gap extraction with respect to cutter gate setting is not a
requirement of the TGP.

5Here we define the effective g-factor as the average slope of the ex-
tracted induced gap vs B field. This is different from the conventional
definition of the spin g-factor in terms of dE/dB at k = 0. The former
depends on spin-orbit coupling and orbital physics whereas the latter
does not. However, in the single-sub-band regime, where the lowest
energy state has momentum close to k = 0, both the orbital effect
of the B field and spin-orbit coupling effects are small. In this case,
|geff | is a good proxy for |g�|.

Vp-dependent B-field values, and the extent of both the gapless
regions and the SOI2s are of similar size in the B-Vp plane.
However, we emphasize again that the main role of simulated
data such as that shown in Fig. 31 is to test the TGP on
(simulated) devices for which we know the phase diagram and
not to reproduce the experimental phase diagram.

3. Reproducibility of the data: Measurements A2 and A3

We now present experimental data from a different
cooldown in which measurements A2 and A3 were performed
one week apart. These measurements produced similar data
sets, both passing the TGP, indicating the reproducibility of
our data and the device’s stability from one measurement
run to another. Both of these data sets are consistent with
measurement A1 shown in Sec. IV A.

In our simulations, we saw that devices can pass the
TGP for some disorder configurations but not others. Each
cooldown typically leads to a somewhat different disorder
configuration, resulting, for example, in a shift of the gate
voltages at which we see the depletion of the lowest sub-band.
As mentioned previously, when the device idles for a week,
the disorder configuration can also drift slightly. Hence, we
expect that the same device will pass the TGP in some mea-
surements but not in other measurements occurring a week
or more apart or in different cooldowns. This was the case
with device A. It regularly passed the TGP, but also failed
sometimes. In this subsection, we focus on measurements A2
and A3, in which device A passed the TGP with a topological
phase that shifted in parameter space. For measurement A2,
device A was warmed up, removed from the dilution refriger-
ator in which A1 was performed, cooled down in a different
dilution refrigerator, and remeasured. In accordance with the
TGP, we performed Stage 1 measurements and identified an
ROI1 with stable ZBPs near Vp = −1.4 V. The results of the
subsequent Stage 2 measurement are shown in Fig. 13.

The phase diagrams in Figs. 13(a) and 13(b) have the same
basic features as those in Figs. 11(a) and 11(b). The primary
differences are as follows. The lowest gap closing point in A2
is slightly lower in field than in A1, leading to an effective
g-factor of |geff | ≈ 6.4. The topological phase starts at lower
fields, close to 0.8 T, which is closer to the lowest fields
at which the gap closes than in A1, and it extends over a
larger range of plunger gate voltages, δVp = 2.5 mV but a
similar magnetic field range δB ≈ 500 mT. The maximum
topological gap in measurement A2 is �max

topo = 29 µeV [see
Fig. 13(b)], which is the largest observed for device A, and
the percentage of the boundary that is gapless is 80%. The
local conductances are shown in Figs. 13(c) and 13(d). In
addition to ZBPs, there is also a strong local resonance at
the right junction which is evident in Fig. 13(d). However,
this resonance moves away from zero bias as B is increased.
Furthermore, this resonance disappears in the subsequent
measurement shown in Fig. 14(d), indicating that this is an
accidental feature due to an impurity that moved between
measurements A2 and A3. This trivial resonance partially
obscures the stable ZBP, which has a smaller amplitude.

In Fig. 14, we show measurement A3 which was performed
in the same cooldown as measurement A2 but one week later.
The electrostatic environment of the system drifted by 2–3
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FIG. 13. (a) The experimental phase diagram of device A (measurement A2) that results from combining the clusters of stable ZBPs at
both junctions with the map of the locus of zero/nonzero gap. The stability of ZBPs is determined by varying the cutter gate settings so that
for both junctions GN take the values 0.3, 0.5, 0.7, and 0.9e2/h. The boundary of the SOI2 is interpreted as a phase transition line, consistent
with a visible gap closure along 80% of it. (b) The experimental phase diagram, showing trivial/topological phases, which the TGP identifies
with the exterior/interior (q = ±1) of the SOI2. The color scale shows the size of the trivial (positive sign) or topological (negative sign)
gap. The protocol assigns a maximum topological gap �max

topo = 29 µeV. Measured local and antisymmetrized nonlocal conductances along the
horizontal line in (b) at Vp = −1.4045 V: (c) GLL, (d) GRR, (e) A(GRL ), (f) A(GLR ). The SOI2 lies between the vertical lines. Panels (g)–(j) are
“waterfall” plots representing the same measured data. The data shown in (c)–(j) were obtained for left (right) GN ≈ 0.5e2/h (≈0.8e2/h). The
black curves in (e) and (f) and the dots in (i) and (j) indicate where the nonlocal signal drops below a threshold value, as described in the text.
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FIG. 14. (a) The experimental phase diagram of device A (measurement A3) that results from combining the clusters of stable ZBPs at both
junctions with the map of the locus of zero/nonzero gap. The stability of ZBPs is determined by varying the cutter gate settings so that for both
junctions GN take four values between 0.3 and 0.8e2/h at B = 0. The boundary of the SOI2 is interpreted as a phase transition line, consistent
with a visible gap closure along 90% of it. (b) The experimental phase diagram, showing trivial/topological phases, which the TGP identifies
with the exterior/interior (q = ±1) of the SOI2. The color scale shows the size of the trivial (positive sign) or topological (negative sign) gap.
The protocol assigns a maximum topological gap of �max

topo = 22 µeV. Measured local and antisymmetrized nonlocal conductances along the
horizontal line in (b) at Vp = −1.4083 V: (c) GLL, (d) GRR, (e) A(GRL ), (f) A(GLR ). The SOI2 lies between the vertical lines. Panels (g)–(j) are
“waterfall” plots representing the same measured data. The data shown in (c)–(j) were obtained for left (right) GN ≈ 0.6e2/h (≈0.4e2/h). The
black curves in (e) and (f) and the dots in (i) and (j) indicate where the nonlocal signal drops below a threshold value, as described in the text.

245423-20



INAS-AL HYBRID DEVICES PASSING THE … PHYSICAL REVIEW B 107, 245423 (2023)

FIG. 15. (a)–(d) Bias-field cuts of measurement A3 at Vp = −1.4083 V. GLL is shown for 4 different left cutter gate settings #1–#4
corresponding, respectively, to GN of approximately 0.5, 0.6, 0.7, and 0.8e2/h. Panel (b) for cutter #2 shows the same data as Fig. 14(c).
(e) Line-cut at B = 1.1 T for the above cutter gate settings. The chosen values of B and Vp lie within the SOI2 shown in Fig. 14(b) for left and
right cutters corresponding to GN 0.6 and 0.4e2/h, respectively. Note that the ZBP height is of the order of e2/h for all left cutter gate settings.

mV during the week between the two measurement runs, as is
typically the case in our devices. However, the main qualita-
tive features are reproduced from one run to the next: there is a
topological phase with a comparable critical field and similar
overall shape. The size of the maximum topological gap has
decreased from its value in A2 to �max

topo = 22 µeV, which is
close to value found in measurement A1.

Finally, we discuss the stability of ZBPs with respect to
local perturbations. In Figs. 14(c) and 14(d) one can see stable
ZBPs at both junctions over a magnetic field range δB ≈
0.5 T. They are similarly stable with respect to changes in Vp,
as may be seen from the vertical extent of the orange region in
Fig. 14(a). These peaks are also stable with respect to cutter
changes modulating the transparency of the junctions, as we
show in Fig. 15. There are ZBPs with height O(e2/h) that are
present for 4 cutter gate settings. These changes in left cutter
gate settings tune GN on both sides to vary over the range 0.1
and 1.0e2/h. Thus, while these cutter changes significantly
modify the junction transparencies, the ZBPs remain stable
with respect to these perturbations. In SOI2, there are ZBPs
exhibiting this type of stability at both junctions.

To conclude this subsection, we believe that the totality
of the data from device A, passing the TGP in multiple
cooldowns and remeasurements, qualitative and quantita-
tive consistency with simulations, and the stability of the
SOI2 with respect to various perturbations, provides strong
evidence for the observation of a stable topological supercon-
ducting phase supporting MZMs in this device. We now turn
to the reproducibility of these results in other devices.

B. Experimental data from other devices

Since disorder can destroy the topological phase, and dif-
ferent devices will have different disorder realizations, we
can expect quantitative and qualitative differences between
devices. Indeed, we have measured devices in which we were
not able to find a topological phase. However, devices that
have a narrow Al strip, zero-field induced gap to parent gap
ratio in the required range, and weak disorder often pass the
TGP while devices not meeting these requirements have never
passed TGP, as expected from simulations. For example, no
devices with dielectric charge density above 3×1012/cm2, as
extracted from a Hall bar on the same chip, have passed TGP.

In this section, we show data from devices B, C, and D,
summarized in Figs. 16, 18, and 19, which also pass the TGP,
thereby demonstrating that we can reproducibly fabricate de-
vices passing the TGP. These three devices are DLG devices.
Device B is built on the ε stack and has �Al = 326 ± 29 µeV
and �ind = 169 ± 11 µeV; hence, the ratio of the induced gap
to the parent gap in device B is 0.52, which is slightly larger
than in device A and very close to optimal. It has the largest
topological gap reported in this paper: �max

topo = 61 µeV. De-
vice C is built on the δ stack and has �Al = 292 ± 8 µeV
and �ind = 104 ± 6 µeV; in device D, which is also built on
the δ stack, the corresponding gaps are �Al = 293 ± 9 µeV
and �ind = 117 ± 20 µeV. The ratio of the induced gap to the
parent gap in devices C and D, 0.35, and 0.4, respectively, is
somewhat smaller than the nearly optimal value of 0.52 that
it takes in device B or even the value of 0.44 that it takes
in device A. The effective charged impurity densities at the
interface with the dielectric are n2D,int = 0.79×1012/cm2 in
device B, n2D,int = 1.1×1012/cm2 in device C, and n2D,int =
1.0×1012/cm2 in device D, extracted by the procedure dis-
cussed in Appendix B.6 These values are smaller than in
device A and satisfy the specification given in Sec. II E.

In addition, we show data from devices E and F that do
not pass the TGP. They are DLG devices built on the δ′-stack.
As noted previously, we do not expect all devices to pass
the TGP, even if they were to have the same gap ratio and
disorder levels as device A. Hence, it is not surprising that
some of our devices fail the TGP; indeed, it is required by
consistency with our simulations. Moreover, devices E and F
have lower induced gap to parent gap ratios, which suppresses
their expected probabilities of passing the TGP. Device E has
�Al = 415 ± 13 µeV and �ind = 90 ± 6 µeV (induced gap to
parent gap ratio of 0.22); in device F, the corresponding gaps
are �Al = 338 ± 12 µeV and �ind = 92 ± 14 µeV (induced
gap to parent gap ratio of 0.27). The effective charged

6There is one subtlety here, which is that DLG devices have two
different dielectric layers, one below the first gate layer and one be-
tween the gate layers. The first dielectric layer is likely to control bulk
properties of the wire while both dielectrics contribute to junction
properties. The quoted n2D,int numbers are for Hall bars with both
dielectric layers, but the difference with n2D,int extracted from sibling
chips is small.
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FIG. 16. (a) The experimental phase diagram of device B that results from combining the clusters of stable ZBPs at both junctions with
the map of the locus of zero/nonzero gap. The stability of ZBPs is determined by varying the cutter gate settings so that for both junctions GN

take the values 0.5, 0.41, 0.33, 0.24, and 0.15e2/h at B = 1.4 T. The boundary of the SOI2 is interpreted as a phase transition line, consistent
with a visible gap closure along 92% of it. (b) The experimental phase diagram, showing trivial/topological phases, which the TGP identifies
with the exterior/interior (q = ±1) of the SOI2. The color scale shows the size of the trivial (positive sign) or topological (negative sign) gap.
The protocol assigns a maximum topological gap of �max

topo = 61 µeV. Measured local and antisymmetrized nonlocal conductances along the
horizontal line in (b) at Vp = −1.157 75 V: (c) GLL, (d) GRR, (e) A(GRL ), (f) A(GLR ). The SOI2 lies between the vertical lines. Panels (g)–(j) are
“waterfall” plots representing the same measured data. The data shown in (c)–(j) were obtained for GN ≈ 0.41e2/h on both sides. The black
curves in (e) and (f) and the dots in (i) and (j) indicate where the nonlocal signal drops below a threshold value, as described in the text.
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FIG. 17. “Waterfall” conductance plots of (a) GLL, (b) GRR, (c) A(GRL ), (d) A(GLR ) as a function of the corresponding bias and plunger
gate voltage Vp for device B. The data are the B = 2.12 T vertical line in Fig. 16(b). ZBPs and extracted gap points corresponding to SOI2 are
shown in black.

impurity densities at the interface with the dielectric
is n2D,int = 3.1×1012/cm2 in device E and n2D,int =
3.0×1012/cm2 in device F, extracted by the procedure
discussed in Appendix B. These values are larger than in
devices A–D, and, moreover, are large enough that they do
not satisfy the specification given in Sec. II E.

Device E exhibits clusters of points in (B,Vp) space with
stable ZBPs at both ends, thereby passing Stage 1 of the TGP.
However, nonlocal conductance measurements in the region
of interest yield zero gap. Device E is, thus, in a gapless phase
and it fails Stage 2 of the TGP. Device F fails even Stage 1
because it does not have clusters of (B,Vp) points with stable
ZBPs at both ends.

Overall, the measurement data from devices A–F demon-
strate the different qualitative phenomena observed in our
devices.

1. Device B passing TGP

Since device B has a considerably larger zero-field induced
gap than device A, a topological phase would have to occur
at higher magnetic fields. The TGP finds an experimental
phase diagram that is consistent with this expectation. There
is a topological phase transition at B = 2 T, as shown in
Figs. 16(a) and 16(b). The TGP assigns this device a maxi-
mum topological gap �max

topo = 61 µeV. The median value of
the topological gap across the orange region in Fig. 16(a) is
47 µeV. Device B has |geff | ≈ 3.7, which is smaller than that
of the other devices reported in this paper. This is consistent
with device B’s large �ind/�Al ratio, which implies that elec-
trons in the lowest occupied sub-band have a higher amplitude

to be in the superconductor, thereby inheriting both a larger
induced gap and a smaller |geff |.

The extent of the SOI2 is δB = 0.2 T. The measured ex-
tent in Vp is δVp ≈ 1 mV, however, Stage 2 did not go to
Vp lower than Vp = −1.1580 V, where the SOI2 still appears
to be quite robust, so it is possible that this underestimates
the size of the SOI2. It is also possible that the blue region
centered around B = 2.3 T and Vp = −1.573 V, which the
TGP identifies as a gapped trivial region due to the absence
of stable ZBPs, is actually topological but has MZMs that
are poorly coupled to the leads. There are some sign changes
in the nonlocal conductance, such as the one that occurs at
B ≈ 2 T in Figs. 16(e) and 16(f). Since GLR and GRL are
suppressed at these sign changes, they lead to large values
of the extracted gap, which can bias �max

topo towards larger
values. However, even the median gap is 47 µeV, and there is a
clearly identifiable gap edge at ≈50 µeV in GRL at B = 2.1 T.
“Waterfall” plots for local and nonlocal conductances at fixed
plunger Vp = −1.157 75 V are shown in Figs. 16(g) and 16(j).
Additionally, in Fig. 17 we show “waterfall” plots of conduc-
tances for fixed magnetic field B = 2.12 T corresponding to
the vertical line in Fig. 16(b).

As noted above, device B has the largest �ind value and
the smallest n2D,int value reported in this paper and, perhaps
not surprisingly, the largest topological gap �max

topo as well. The
topological gap is actually equal, within error bars, to the
largest topological gap that we would expect for a perfectly
clean, infinitely long DLG-ε device. This is not a contradic-
tion. Finite-size effects can increase the gap. We measure a
transport gap, which is the gap to extended states (for L =
3 µm), and it can be larger than the gap in the spectrum if
states at the gap edge have short localization lengths.
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FIG. 18. (a) The experimental phase diagram of device C that results from combining the clusters of stable ZBPs at both junctions with
the map of the locus of zero/nonzero gap. The stability of ZBPs is determined by varying the cutter gate settings so that GN range from 0.6
and 1.0e2/h on the left and from 0.2 and 0.4e2/h on the right. The boundary of the SOI2 is interpreted as a phase transition line, consistent
with a visible gap closure along 100% of it. (b) The experimental phase diagram, showing the trivial/topological phases, which the TGP
identifies with the exterior/interior (q = ±1) of the SOI2. The color scale shows the size of the trivial (blue) or topological (red) gap. The
protocol assigns maximum topological gap of 19 µeV. Measured local and antisymmetrized nonlocal conductances along the horizontal line
in (b) at Vp = −2.3655 V: (c) GLL, (d) GRR, (e) A(GRL ), (f) A(GLR ). The SOI2 lies between the vertical lines. Panels (g)–(j) are “waterfall” plots
representing the same measured data. The data shown in (c)–(j) were obtained for left (right) GN of approximately 0.6e2/h (0.2e2/h). The
black curves in (e) and (f) and the dots in (i) and (j) indicate where the nonlocal signal drops below a threshold value, as described in the text.
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FIG. 19. Stage 2 data for device D. There are two SOI2s in the phase diagram. (a) The experimental phase diagram of device D that results
from combining the clusters of stable ZBPs at both junctions with the map of the locus of zero/nonzero gap. The boundary of the SOI2s is
interpreted as phase transition lines, consistent with visible gap closures along, respectively, 100% and 93% of them. (b) The experimental
phase diagram, showing the trivial/topological phases, which the TGP identifies with the exterior/interior (q = ±1) of the SOI2. The color scale
shows the size of the trivial (blue) or topological (red) gap. The protocol assigns maximum topological gaps of 17 and 21 µeV for the top and
bottom clusters, respectively. Measured local and antisymmetrized nonlocal conductances along the horizontal line in (b) at Vp = −2.721 V:
(c) GLL, (d) GRR, (e) A(GRL ), (f) A(GLR ). The SOI2 lies between the vertical lines. Panels (g)–(j) are “waterfall” plots representing the same
measured data. All data shown in this figure were obtained for left/right GN of approximately 0.8e2/h. The black curves in (e) and (f) and the
dots in (i) and (j) indicate where the nonlocal signal drops below a threshold value, as described in the text.
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FIG. 20. Stage 2 data for device E. (a) The regions with stable ZBPs at both junctions. The stability of ZBPs is determined by varying the
cutter gate settings so that the above gap conductances are 0.6 and 1.0e2/h on the left and 0.2 and 0.4e2/h on the right. (b) The gap as function
of B, Vp. It vanishes in the region of interest, so this device fails the TGP. Measured local and antisymmetrized nonlocal conductances along the
horizontal line in (b) at Vp = −1.3893 V: (c) GLL, (d) GRR, (e) A(GRL ), (f) A(GLR ). The local conductances in (c) and (d) show ZBPs, but there
is no gap reopening visible in the antisymmetrized nonlocal conductances in (e) and (f). The cut shown in (c)–(f) is at GN of approximately
0.6e2/h on the left and 0.2e2/h on the right.

2. Devices C and D passing TGP

The experimental phase diagram for device C is shown
in Fig. 18. The TGP assigns this device a maximum topo-
logical gap �max

topo = x19 µeV, which is comparable to that of
A1 and A3. The lowest B field at which the gap closes is
0.7 T, corresponding to |geff | ≈ 4.4, which is comparable to
but smaller than that of device A. The extent of the topo-
logical phase is δVp ≈ 1.5 mV and δB = 0.2 T. On the other
hand, device C’s ROI2 is at significantly lower plunger gate
voltage Vp ≈ −2.3655 V than device A’s. We attribute this to
differences in the dielectric that that are evident from Hall
bar measurements. In addition, the gap closing in device C
is more clearly visible in A(GRL ) than in A(GLR ), and the ZBP
has much higher amplitude in GLL than in GRR. The data are
otherwise similar to that obtained from device A.

In Fig. 19, we show data from device D. There are two
topological regions in the phase diagram. The TGP assigns
maximum topological gaps of 17 µeV for the top and bot-
tom regions, respectively. Even taken together, these regions
occupy relatively small fraction of the phase diagram. The
top cluster is detected at B = 1.1 T whereas the bottom one
appears at B � 1.8 T. The latter is a relatively high field, but
it is consistent with the broad distribution of fields that we find
in simulations.

Our results on device D show that the TGP can even iden-
tify small ROI2s with small topological gaps.

3. Devices E and F not passing TGP

In Fig. 20, we show data from device E. This device has
large regions with stable ZBPs at each end and thus shows a
relatively large ROI1 in the Stage 1 of the TGP. However, in
Stage 2 the system appears gapless throughout the region of
interest: The induced gap closes and there are no signatures of
gap reopening in the nonlocal measurements. Since the system
appears gapless in nonlocal conductances it is unclear if the
correlated ZBPs correspond to a topological or trivial phase:
either the topological gap is too small to be experimentally
resolved or we observe a trivial state that couples to both
sides because of the long coherence length that is expected
in a system with very small gap. The fact that the ZBP is
significantly brighter in GRR than in GLL as well as the similar-
ity of finite-bias features in local measurements hints towards
the second scenario. In both cases, such a phase would not be
suitable for topological quantum computation. This example
demonstrates the importance of Stage 2 of the TGP where
nonlocal conductance is measured in order to identify false
positives from Stage 1.
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FIG. 21. Stage 1 data for device F. The ZBP probabilities at the (a) left and (b) right junctions as a function B and Vp. As may be seen in
(c), there is no region that has stable ZBPs at both junctions.

Meanwhile, device F does not have any regions with stable
ZBPs at both ends, as may be seen in Fig. 21. The absence of
correlations may be due to an inhomogeneous slowly varying
potential along the nanowire. The ZBPs that are seen at one
end or the other are very similar to the ZBPs that are seen in
devices passing the TGP. However, the ZBP that show up in
more than 70% of cutter settings show no stable correlations
between the two junctions. They may originate from trivial
Andreev bound states (ABS) crossing zero energy or stable
ZBPs, dubbed quasi-MZMs, that appear due to a slowly vary-
ing potential near the junction. Such states do not span over
the whole length of the wire. The absence of a large enough
cluster of correlated ZBPs causes this device to fail Stage 1 of
the TGP.

V. SUMMARY AND DISCUSSION

In the previous sections, we have presented a sum-
mary of observed phenomena in gate-defined semiconductor
nanowires coupled to a superconductor. We have demon-
strated that, when devices A–D are tuned to the single-sub-
band regime, they yield data passing the TGP at magnetic
fields in the range 1–2.5 T. We have observed topological
gaps as high as �max

topo ≈ 60 µeV. We emphasize that our re-
sults are reproducible within the same cooldown and between
different cooldowns, as we have shown for device A. In short,
our main empirical result is that multiple devices have passed
the TGP.

These measurements represent strong evidence for the ob-
servation of a topological superconducting phase supporting
MZMs. The TGP has been tested with extensive simulations,
reliably identifying topological regions of the phase diagram
of simulated devices and correctly distinguishing trivial An-
dreev bound states from Majorana zero modes. We found that,
for a simulated device, there is >90% probability that, when
the TGP finds an ROI2, there is a topological phase in this
region of its phase diagram.

We note that the observed topological gaps are in the range
of 17–61 µeV and occupy a correspondingly small size of
the phase diagram. Mesoscopic fluctuations are significant,

so device-to-device variation and cooldown-to-cooldown vari-
ation for the same device cannot be neglected for current
devices.

In order to guide incremental progress towards passing the
TGP, we relied on our estimates of the material and disorder
requirements that gate-defined nanowires must satisfy. We de-
veloped designs and fabrication processes capable of meeting
these requirements.

In the remainder of this section, we turn to the interpreta-
tion of our results. The stability of the identified topological
phase as a function of B and Vp is an important consistency
check for our results. For the extracted effective geff -factor
in measurement A1, δB ≈ 500 mT corresponds to a Zee-
man energy of 80 µeV and, for the calculated lever arm of
≈85 meV/V, δVp ≈ 1.5 mV corresponds to a chemical po-
tential shift of 128 µeV [see Eq. (1)]. In other words, the
phase space extent in field is 3.5 times and the extent in
gate voltage is 3.9 times the maximum topological gap of
23 µeV. In measurement A2, we found that the topological
region in Fig. 13 extends over a maximum B-field range
δB = 500 mT and a maximum δVp = 2.5 mV, corresponding,
respectively, to energy scales of 80 and 213 µeV. The other
devices/measurements have similar stability in B and Vp. Since
the topological phase has an irregular shape, its area is smaller
than the product of B and Vp; it is listed in Table III, where the
areas of the other measured topological regions are also listed.
All of the devices have VSOI2 in the range 0.1–0.5 mV T, and
they have VSOI2 values that are larger than (�max

topo)2, in some
cases, substantially larger, except device B. Note, however,
that device B may have a larger SOI2 than what we can
see in Fig. 16, extending below Vp = −1.1580 V. In other
words, the observed candidate MZMs are stable with respect
to parameter changes comparable to or larger than the max-
imum topological gap, which is an intrinsic energy scale of
the problem that was determined from nonlocal conductance
measurements.

The summary of the simulated data in the magnetic field
range B � 2.5 T, which is comparable to experiment, is shown
in Table IV. Here we present a brief summary; the raw data
set is available [98]. The TGP yield and the average vol-

245423-27



MORTEZA AGHAEE et al. PHYSICAL REVIEW B 107, 245423 (2023)

TABLE III. For devices A–D passing the TGP, we list the the measured maximum topological gap �max
topo; the effective g-factor geff ; the

volume of the SOI2 shown in Sec. IV, in units of mV T and (�max
topo)2; the “center-of-mass” magnetic field BSOI2 of the SOI2; and the percentage

of the boundary of the SOI2 that is gapless (GB%). Device D has two SOI2, and we list the values associated with both. From simulations, we
estimate the lever arm as dμ/dVp = 85 meV/V for device A, 78 meV/V for device B, and 79 meV/V for devices C and D (see Table I).

Device, measurement Design, stack �max
topo [ µeV] |geff | VSOI2 [mV T] VSOI2 [(�max

topo)2] BSOI2 [T] GB [%]

A, A1 SLG-β 23 5.6 0.5 12 1.7 78
A, A2 SLG-β 29 6.4 0.5 8.6 1.0 80
A, A3 SLG-β 22 6.4 0.2 5.7 1.0 90
B DLG-ε 61 3.7 0.2 0.3 2.1 92
C DLG-δ 19 4.4 0.1 2.0 1.0 100
D DLG-δ 17 4.5 0.1 2.5 1.8 100
D DLG-δ 21 4.5 0.1 1.4 1.1 93

ume of SOI2 decreases with disorder strength (leaving aside
the case of n2D,int = 0.1×1012/cm2 which requires a different
TGP calibration). The observed phase space of the topological
phase is consistent with the results of simulations presented in
Table IV, where we found that simulated SLG-β and DLG-ε
devices had mean V̄SOI2 in the range 0.1–0.2 mV T, but with
a distribution that has long tails extending up to large vol-
umes. Similarly, our simulated SLG-β devices have �max

topo
values in the range 23–35 µeV while our simulated DLG-ε
devices have �max

topo values in the range 25–29 µeV, both with
long tails at large gaps. Device A would appear to be in the
tail of the distribution, both with respect to �max

topo and VSOI2

while device B appears to be in the tail of the distribution
with respect to �max

topo. In summary, the phase space for the
topological phase is roughly as large as we would expect for
a maximum topological gap of 20–60 µeV and broadly con-

TABLE IV. Statistics of ROI2 and SOI2 properties for simulated
transport data from SLG and DLG devices for the average disorder
strengths given in the first column. The third and fourth columns
show the TGP yield as a fraction of devices that have at least
one ROI2. Its denominator indicates the total number of simulated
devices; the numerator, the number of devices that pass the TGP.
The TGP yield decreases with increasing disorder. All statistics in
this table have been calculated with the magnetic field restricted to
B � 2.5 T. The mean value of �max

topo has weak dependence on the
disorder strength, but the average phase space volume of an SOI2,
V̄SOI2, decreases with increasing disorder, as may be seen in the fourth
column. For all disorder strengths simulated, V̄SOI2 ∼ O(0.1) mV T.
The last column lists B̄SOI2, the average B field of an SOI2, where the
bar represents the statistical average over different disorder realiza-
tions. These regions occur at significantly higher magnetic field in
the ε-stack, as expected since �ind is larger and g� is smaller.

Design, n2D,int Yield �̄max
topo V̄SOI2 B̄SOI2

stack [1012/cm2] �2.5 T [µeV] [mV T] [T]

SLG-β 1.0 47/50 23 0.2 1.9
2.7 23/50 34 0.1 1.5
4.0 24/49 34 0.1 1.5

DLG-ε 0.1 24/50 35 0.2 2.2
1.0 28/50 29 0.2 2.3
2.7 13/50 30 0.2 2.2
4.0 16/50 30 0.1 2.2

sistent with our simulations. We note that this is a larger gap
than in early measurements of the ν = 5

2 fractional quantum
Hall state [114,115] and further note that the topological gap
at ν = 5

2 subsequently increased dramatically with material
quality [116,117].

The measured �max
topo, VSOI2, BSOI2 values in Table III are

consistent with the simulated values in Table IV, which further
validates the simulation model that was used to estimate the
FDR. The primary outliers are VSOI2 for measurements A1
and A2 and �max

topo for device B; they are substantially larger
than the mean values in simulations, but within the long tails
of the non-Gaussian distributions found in simulations (see
Appendix E for details). This consistency between simulated
and measured values validates the model used to test the TGP,
as suggested in Ref. [112].

We now consider other potential explanations of our re-
sults. According to our simulations, the probability that a
device that passes the TGP does not have a topological phase
overlapping the ROI2 is less than 10%, so any other expla-
nation is extremely unlikely, though not impossible. For an
intuitive understanding of why other explanations are un-
likely, let us discuss trivial ZBPs. First, we observe that all
of our devices have trivial ZBPs, even the ones that pass
the TGP. Often, they occur at only one junction, but they
sometimes occur at both junctions and they can even be stable
to changes in junction transparency and also to changes in B
and Vp. For instance, there are stable ZBPs at both junctions in
measurement A1 for 1 T < B < 2 T and Vp ≈ −1.173 V, as
may be seen in Fig. 11. In device E, there are stable ZBPs at
both junctions for 0.5 T < B < 0.6 T and Vp ≈ −1.138 95 V,
as may be seen in Fig. 19. These are all trivial and fall outside
the topological region because the observed bulk transport gap
is zero.

Now, let us consider the causes of trivial ZBPs. One pos-
sible origin is a slowly varying potential near the end of a
device, which can be caused by certain tunnel barriers. In suf-
ficiently clean devices, this can lead to quasi-MZMs before a
bulk gap closing, where they are a precursor to the topological
phase transition [46–49,51]. Quasi-MZMs do not appear after
a gap closing/reopening. If the bulk gap never reopens, as in
Figs. 31(g)–31(j), then quasi-MZMs fail to become MZMs.
However, if the bulk gap reopens, as in Figs. 31(c)–31(f), then
quasi-MZMs evolve into true MZMs. By design, Stage 2 of
the TGP weeds out stable ZBP clusters in which quasi-MZMs
do not evolve into true MZMs.

245423-28



INAS-AL HYBRID DEVICES PASSING THE … PHYSICAL REVIEW B 107, 245423 (2023)

Trivial ZBPs can also be induced by disorder in prox-
imitized semiconductor nanowires with spin-orbit coupling
[43–45]. However, this scenario does not entail a gap closing
and reopening in the nonlocal signal, from which we conclude
that it does not apply to devices A, B, C, and D. ZBPs can
also be caused by trivial ABS, which can “accidentally” pass
through zero energy. It is very difficult to discern a trivial
ABS from an MZM purely from the local conductance spec-
troscopy, which can be virtually identical. However, as in the
case of disorder-induced ZBPs, a trivial ABS need not be
accompanied by a gap closing and reopening in the nonlocal
signal.

A gap closing/reopening could be caused by the orbital
effects of the magnetic field. When half a flux quantum is
threaded through the effective cross-sectional area of the de-
vice, the proximity effect is suppressed, and the gap closes. It
reopens when the flux increases still further, closing a sec-
ond time when 3

2 flux quanta thread the active region. For
device A, we expect a gap closing due to orbital effects at
�2.5 T in higher sub-bands and even higher fields >3 T in the
lowest sub-band. The observed gap closing is at much lower
fields. Crucially, a gap closing due to orbital effects would be
weakly dependent on the gate voltage, as illustrated by the
simulated phase diagrams of clean systems in Fig. 4, where
the first closing due to orbital effects is a wide, nearly vertical
white bar at B ≈ 2.5 T that intersects the topological lobes
at Vp ≈ −0.8 V and Vp ≈ −1.0 V (SLG-β) or Vp ≈ −0.95 V
(DLG-ε). We find similar behavior in the simulations that we
used to test the TGP, which include disorder. On the other
hand, as may be seen in Fig. 13, the gap closing that is
observed in measurement A2 is strongly dependent on the gate
voltage: at Vp ≈ −1.407 V, the gap closes at B ≈ 0.6 T, but at
Vp ≈ −1.398 V, it is still open at B = 2 T. Similarly, device
C has a gap closing that occurs at B ≈ 0.7 T at Vp ≈ −2.363
but it is still open at B = 1.3 T at Vp ≈ −2.360. Devices B
and D have ROI2s that occur at higher fields, but still below
2.5 T, and the gap closings are at, respectively, B ≈ 1.6 T and
B ≈ 1 T. To determine the Vp dependence of the gap closing
in device B, we performed a large-scale Stage 1 scan, which
shows clear dependence, with a trivial gap that that is still
open at B = 2 T for some values of Vp. Hence, an explana-
tion relying on the orbital effect of the magnetic field is not
consistent with either the B-field value or the Vp dependence
of the observed gap closings/reopenings in devices A–D.

Of course, it is conceivable that the bulk gap closes and
reopens accidentally and that trivial ZBPs also accidentally
occur for the same B and Vp. But to pass the TGP, the acciden-
tal closing would have to occur over an entire curve in the B-Vp

phase space and, moreover, the trivial ZBPs would have to
persist over the enclosed region. Of course, we cannot rule this
out completely. However, such coincidences do not require
any physics that is not incorporated in our simulations. Hence,
they could occur in our simulations, and we can quantitatively
bound their probability. The false discovery rate (FDR) that
we estimate from simulations is � 8% at a 95% confidence
level for all of the device designs, material stacks, and disorder
levels that we have simulated, which implies that there is a
low probability that data from devices A–D can be explained
by trivial ZBPs that occur coincidentally with an accidental
gap closing/reopening instead of a topological phase.

FIG. 22. (a) The linear tetron, a minimal device for performing
fusion. The two outer regions must be tuned into the topological
phase via the TGP, while the middle section must be in the trivial
phase. This results in a device with four MZMs. (b) Two two-sided
tetrons, with which measurement-based braiding can be performed.
There are 5 topological sections. The middle (purple) one is a co-
herent link that is used for connecting the left and right of the two
tetrons.

VI. LOOKING AHEAD

A reliable process for tuning devices into the topologi-
cal phase is an essential step on the journey to topological
quantum computation, which relies on the fusion and braiding
of anyons. Networks of such wires can be assembled into
a many-qubit device, and this protocol can be used to tune
each wire within a qubit into the topological phase. The linear
tetron qubit [118,119] is a minimal device for performing
two noncommuting fusion operations;7 it is shown schemat-
ically in Fig. 22(a). There are two outer topological sections,
separated by a trivial section. Fusion outcomes for different
pairs of MZMs are measured by coupling these MZMs to
adjacent quantum dots. By measuring different sequences of
pairs of MZMs, we can directly measure the fusion rules, a
topological invariant of the state. The parameter space of such
a device is simply too large to explore in the hope of finding
a suitable operating point unless each of the outer sections of
the nanowire is individually tuned into a topological phase,
which can be achieved using the TGP.

7See Refs. [120–124] for related alternate qubit designs.
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Coherent manipulation of the encoded quantum state,
for example through measurement-based implementations of
braiding transformations [125,126], requires an even more
complex device, as shown in Fig. 22(b). This device consists
of two superconducting islands, each comprised of two topo-
logical segments linked together by a short region of trivial
superconductor, and thus contains two qubits. We refer to this
configuration as a two-sided tetron because MZMs are on each
side of the device. The additional topological wire between
the qubit islands, shown in purple, is added to allow mea-
surements between MZMs on opposite sides of the islands.
In this device, unitary Clifford gates on one of the two qubits
can be performed by using the other as an auxiliary qubit and
performing a sequence of single- and two-qubit measurements
[119]. Despite the even larger parameter space, these devices
can be tuned using the TGP. Continued improvement in simu-
lation, growth, fabrication, and measurement capabilities will
be required to achieve the topological gap required for such
coherent operations.
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APPENDIX A: EFFECTS OF DISORDER

1. Projection to proximitized nanowire model

The disorder-free limit of the single-sub-band regime is
well-represented by a Hamiltonian of the form of Eq. (1):

H = Z†(HSM − �̃OSC)Z. (A1)

In Eq. (A1), the effective mass, g-factor, and spin-orbit cou-
pling in HSM, obtained by projecting the full model for the
device designs and material stacks described in Secs. II B
and II C into the lowest sub-band, take the values given in
Table I. The parameters in Table I are weakly density de-
pendent within the range of n ∼ 0.02–0.04 nm−1, which
corresponds to the range of a Fermi wavelength k−1

F �
40–80 nm. Compared to Eq. (1), there is a transformation
Z , described below, which is due to the renormalization of
the electrons in the semiconductor by their coupling � to the
Al, which has a superconducting gap �Al = 300 µeV and a

Zeeman potential Vx,SC = gSCμBB/2 with g-factor gSC = 2.8 In
the following we will neglect the orbital effect of the mag-
netic field on the superconductor, despite keeping the Zeeman
splitting. The justification for this is that the SC thickness is
d < 10 nm and we estimate the disordered coherence length
in the Al, ξAl, to be around 40 nm. Orbital effects can be
neglected when the depairing energy is small compared to the
gap; this ratio goes as the square of the ratio of flux through
the effective cross-section dξAl to the flux quantum, yielding
a condition (BξAld/�0)2 � 1 [127]. For fields B < 2.5 T, the
left-hand side is less than 1

4 , so we expect the corrections
due to orbital effects to be correspondingly small. The ef-
fective pairing depends on the Zeeman potential in the SC as
�̃ = ��Al/

√
�2

Al − V 2
x,SC . Additionally, the Zeeman potential

experienced by the SM now includes an induced contribution
from the Al, Ṽx = Vx + �Vx,SC/

√
�2

Al − V 2
x,SC .

In all three cases, SLG β stack and DLG δ and ε stacks,
the transformation by Z as well as the induced Zeeman energy
from the Al suppress the effective g-factor below gSM. Hence,
as discussed in the previous section, the coupling between the
semiconductor and the superconductor, �, should not be too
large or else the g-factor will be strongly suppressed and the
topological phase will be pushed to high B fields where the Al
approaches the Clogston limit. On the other hand, � cannot be
too small, either, or else the induced gap �ind ∼ ��Al/(� +
�Al) will be small.

We now turn to the renormalization factor Z . The Green’s
function of a hybrid SM-SC system is given, in general, by

G(ω) = [ω − HSM − �(ω)]−1 (A2)

with a self-energy �(ω) obtained by integrating out the SC
degrees of freedom using the tunneling Hamiltonian model
defined in Ref. [128],

�(r, r′, ω) = −
∫

dx1dx2 T †(r, x1)T (x2, r′) GSC(x1, x2, ω).

(A3)
Here, the integrals are taken over the superconducting domain
with x = (z, r) where z and r are out of plane and in the plane
of the interface, respectively; the tunneling matrix element
reads as

T (x1, r) = tδ(r1 − r)δ(z1)∂z1 . (A4)

The delta function here corresponds to momentum conserva-
tion parallel to the interface whereas ∂z1 enhances transmis-
sion for electrons in the superconductor that are incident with
momentum normal to the interface. After some algebra [27],
one finds that �(r, r′, ω) ∝ δ(r − r′)

∫
dξkGSC(ω, k) where

δ(r − r′) represents the rapid decay of the self-energy on the
scale of the Fermi wavelength in the metal.

We now derive the expression for the self-energy in the
presence of disorder in Al which is crucial for understanding
the proximity effect [27,129–132]. Indeed, disorder removes
momentum conservation constraints and effectively increases

8Note that this effective Hamiltonian is only valid provided �Al is
not too small. In the more general case, integrating out the supercon-
ductor leads to an effective action that is nonlocal in time and has an
energy-dependent renormalization.
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the tunneling rate �. The disorder-averaged self-energy can be
written as

�(r, r′, ω) = �g(ω)δ(r − r′), (A5)

where the Usadel Green’s function g(ω) represents the dif-
fusive limit of a spin-split s-wave superconductor. Here we
neglect the orbital contribution of the magnetic field, as justi-
fied above. Analytic expressions for this Green’s function in
this limit have been recently reported in Refs. [133,134].

Now, we would like to obtain a frequency-independent
effective Hamiltonian with eigenvalues that approximate the
poles of G(ω) [Eq. (A2)], but, in order to do so, it is insuffi-
cient to take the static limit by replacing �(ω) by �0 ≡ �(0).
A better, widely used, approximation involves grouping the
linear-in-frequency part of the self-energy, �1 ≡ ∂ω�(ω)|ω=0,
with the frequency of the Green’s function to define an overall
renormalization of the energy scale before taking the static
limit. Here we describe a generalization of that method.

Specializing the expressions in [133,134] to the static and
linear-in-frequency parts, we obtain

�0 = −�(−Vx,SCσxτz + �Alσyτy)√
�2

Al − V 2
x,SC

, (A6)

�1 = −�
(
�2

Al − Vx,SC�Alσzτx
)

(
�2

Al − V 2
x,SC

)3/2 , (A7)

and the Green’s function in this linearized representation is

G̃(ω) = [ω(1 − �1) − HSM − �0]−1. (A8)

As a consistency check, we can consider the well-known
Vx,SC = 0 limit, where �0 = −�σyτy and �1 = −�/�Al and
recover

G̃Vx,SC=0(ω) = �Al

�Al + �

[
ω − �Al

�Al + �
(HSM − �σyτy)

]−1

(A9)

with poles at the eigenvalues of the renormalized effective
Hamiltonian

Heff = �Al

�Al + �
(HSM − �σyτy), (A10)

recovering the previous results of Ref. [27]. In the more
general case where Vx,SC �= 0, �1 is not proportional to the
identity. Hence, we have to be careful in factoring out the
coefficient of ω. This is because we require a Hermitian Heff ,
and in general the matrix (1 − �1)−1(HSM + �0) is not Her-
mitian. To resolve this, we take a symmetric product, defining
Z = (1 − �1)−1/2 and obtain the result

Heff = Z†(HSM + �0)Z. (A11)

Finally, we now extend the model to include potential
disorder in the semiconductor:

H = Z†
(
HSM − �̃OSC + HDis

)
Z, (A12)

where the disorder potential, projected into the lowest sub-
band, is

HDis =
∫ L

0
dx V (x) ψ†

σ (x)ψσ (x). (A13)

FIG. 23. The effective parameter δV describing the disorder
strength as a function of n2D,int , the density of charged defects at
the semiconductor-dielectric interface, for the SLG-β, DLG-δ, and
DLG-ε design and material stacks.

For the disorder mechanisms we have included, we find that
the random potential can be approximately characterized by
its sample-averaged autocorrelation:

〈V (x)V (x′)〉 = δV 2 exp(−|x − x′|/κ ). (A14)

Similar to our extraction of other single-sub-band parameters,
we generate disorder potentials using the full 3D electrostatics
model,9 project the disorder potentials to the lowest subband,
obtain the autocorrelation averaged over several disorder
realizations, then fit the values δV , κ . These projected disor-
der parameters, variance δV < 2 meV and correlation length
κ = 80, 115, and 120 nm (for β, δ, and ε stacks, respectively),
are obtained for the same design and materials stack as the
uniform parameters given in Table I. Here, the various sources
of disorder and their strengths have been distilled to two
numbers. These parameters’ relation to the underlying micro-
scopic disorder depends on both the device geometry and the
defect types and densities. We show the relation between δV
and n2D,int for SLG and DLG designs for the β, δ, and ε stacks
in Fig. 23.

2. Disorder-driven phase transition

In general, disorder suppresses the topological phase
[135–145], causing important changes to the phase diagram
of Fig. 1. For weak disorder, this leads to a decrease of
the topological gap and an increase of the disordered su-
perconducting coherence length in the topological phase. As

9In this paper we have used the 3D Thomas-Fermi model for
screening in device electrostatics simulations. In the relevant pa-
rameter regime (i.e., in the lowest sub-band) we have compared the
Thomas-Fermi (TF) approximation with Schrödinger-Poisson (SP)
calculations and find values of δV that agree within 20% accuracy. SP
calculations yield a slightly smaller δV at low densities, and a slightly
larger δV at higher densities within the lowest sub-band. We attribute
this to a difference in screening due to the difference between the 3D
density-of-states assumed by TF and the 1D density-of-states of the
actual gate-defined nanowire.
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the disorder strength is increased, these variations can create
small nontopological regions in an otherwise topological wire,
thus nucleating additional subgap states at the domain walls
between topological and nontopological regions. Eventually,
these subgap states hybridize and lead to the breakdown of
the topological phase through Griffiths’ effects [135]. In the
limit in which the clean topological gap �T is small compared
to the Fermi energy, the stability condition for the topological
phase is �loc > ξT [138], where �loc is the localization length
in the normal state and ξT is the coherence length in the
clean topological superconductor. Equivalently, this can be
rephrased in terms of energy scales as �Tτ > h̄/2, where τ

is the elastic scattering time. In the effective model governed
by H = HSM + �indOSC + HDis, the scattering rate due to the
random potential V (x) can be evaluated to lowest order in δV :

h̄

τ
= δV 2

2EF

2kFκ

1 + (2kFκ )2
. (A15)

Here, EF and kF are the Fermi energy and momentum. Thus,
the transition at �Tτ = h̄/2 occurs at a critical value δV 2

c :

δV 2
c = 4EF�T[1 + (2kFκ )2]/2kFκ. (A16)

This expression for the critical disorder strength is valid in the
regime of weak disorder and small gap, �T � EF . However,
the nanowire in the single-sub-band regime has a small Fermi
energy, so the latter requirement is difficult to satisfy. More-
over, disorder sources with correlation lengths κ � k−1

F cause
stronger scattering than short-range disorder κkF � 1, as may
be seen from Eq. (A15). For realistic disorder levels, it is nec-
essary to go beyond lowest order in δV [103]. Consequently,
the precise location of the disorder-driven phase transition is
more complicated than Eq. (A16) when the clean topologi-
cal gap and disorder strength are comparable to the Fermi
energy [103,141]. Finally, there are important differences
between the thermodynamic limit and finite-sized systems,
where the phase transition is rounded into a crossover. In order
to understand these additional complexities, we calculate the
disordered coherence length numerically using the transfer
matrix method, as we discuss in the next two subsections.

3. Length scales and topological phases in finite systems

Since we are concerned in this paper with topological
phases in finite systems with disorder, we must pay atten-
tion to several important length scales. We will denote the
superconducting coherence length in the wire by ξ (0). It is
the distance that a zero-energy unpaired electron can pene-
trate into the proximitized nanowire. In the topological phase,
ξ (0) corresponds to the localization length of a Majorana
zero mode. The coherence length ξ (0) diverges at the phase
transition between the trivial and topological superconducting
phases. In the topological phase, when disorder is very weak,
ξ (0) approaches its clean value ξT. Increased disorder elon-
gates ξ (0) in the topological phase, while it shortens ξ (0) in
the trivial phase.

In a perfectly clean system, there would be no states below
the clean topological gap �T, apart from the MZMs, and states
above the gap would all be extended. However, even weak
disorder localizes all states except the zero-energy state at the
critical point, as noted in Sec. II A. It also causes localized

states to appear below �T. We will call the energy-dependent
localization length, calculated for the Bogoliubov–de Gennes
Hamiltonian (1), ξ (E ). At low energy, ξ (E ) → ξ (0). When
disorder is very weak, the density of states is very low for
E < �T, and these states have localization lengths that grow
smoothly as a function of E , increasing from ξ (0) to ξ (�T ).
If ξ (�T ) > L, then states above �T will appear to be extended
and there will be an apparent transport gap �tr � �T, which is
the gap to “extended states,” namely the states whose localiza-
tion lengths ξ (E ) are larger than the system size. Turning now
to the case of more general disorder strengths, we define ξ (�)
as the maximum value of ξ (E ) for E < �ind. Our devices are
designed so that ξ (�) � L. When this holds, we can measure
the transport gap �tr , which is the minimum E for which
L/ξ (E ) is small enough that states at energy E are visible in
bulk transport. We explain these measurements in Sec. III and
Appendix D 1.

The decay of subgap states at small energies E � �T is
controlled by ξ (0) while transport by excited states is con-
trolled by ξ (�). Hence, if we observe a ZBP at one junction,
the amplitude to observe it at the other junction decays as
e−L/ξ (0), but if we observe an excited state of the bulk at one
junction, the amplitude to observe the same state at the other
junction decays at least as fast as e−L/ξ (�).

Thus, depending on the disorder level and device length,
there are three parameter regimes for the operation of a topo-
logical device. The first regime is when ξ (0) < ξ (�) � L. In
this limit, the device is longer than any of the finite length
scales that characterize the topological phase. Hence, there is
no characteristic energy scale of the bulk topological phase
that can be extracted from transport measurements.

In the second regime, ξ (0) � L � ξ (�). In this regime,
which we will call the asymptotic regime, the device is much
longer than the localization length of a low-energy bound
state. When ZBPs are observed at both junctions, we know
that there are two distinct bound states, one at each junction.
Since L � ξ (�), there are excited states that are effectively
extended, i.e., have localization lengths that are comparable to
or longer than the system size. The transport gap is the energy
gap to such states.

Finally, there is a third regime, in which ξ (0) � L � ξ (�).
This is a crossover regime in which the system is longer
than the MZM localization length but it may not be so much
longer that we are in the asymptotic limit. In this case,
there may be some bulk transport at zero energy even when
�tr > 0 because the e−L/ξ (0) contribution is not negligible.
Consequently, the system will be intermediate between the
asymptotic regime and the critical regime that we define in
the next paragraph. As ξ (0) is reduced, the system will move
more firmly into the asymptotic topological regime. However,
there is not a particular value of the ratio L/ξ (0) that sepa-
rates the crossover regime from the asymptotic regime; the
evolution from one to the other with increasing L/ξ (0) is
smooth.

None of the three regimes mentioned above, thermody-
namic, asymptotic, and crossover, are possible near the critical
point, where ξ (0) = ∞. When L � ξ (0), the system is in
the critical regime, and we cannot distinguish it from a crit-
ical system. Even in a device of length L = 3 µm, this is a
fairly broad region. As we shall see, for intermediate disorder
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FIG. 24. The coherence length ξ (0) evaluated numerically by the transfer matrix method for the model in Eq. (A12) with DLG, ε-stack
parameters from Table I, and characteristic disorder strengths (a) δV = 0.3 meV and (b) δV = 0.9 meV. The color scale saturation highlights
the divergence of ξ (0), indicating the phase transition from the low-field trivial phase to the high-field topological phase. The solid and dashed
lines mark contours of constant ξ (0) = 1 and 3 µm, respectively. For our 3 µm simulations in Sec. II F, the region enclosed by dashed lines
roughly represents the “critical” regime, while the area between dashed and solid lines is in the “crossover” regime where L > ξ (0), but we
still expect finite-size effects and mesoscopic fluctuations.

strengths, over much of the parameter range in which the
system would be in the topological phase for L → ∞, the
system is in the critical regime because the correlation length
is long and L � ξ (0).

As an illustration of these various regimes, we calculate
ξ (0) for the model Eq. (A12) using the transfer matrix method
[146]. In Fig. 24 we plot the result for DLG, ε-stack pa-
rameters from Table I and characteristic disorder strengths
δV = 0.3 and 0.9 meV. As ξ (0) is a function of the chemical
potential and applied magnetic field, a finite wire can go from
the critical to crossover to asymptotic regimes depending on
these parameters. When the system is in the thermodynamic,
asymptotic, or crossover regimes, it is deep in a �tr > 0 phase.
The devices discussed in this paper are in the asymptotic or
crossover regimes. We discuss the implications for transport
measurements when we described the topological gap proto-
col in Sec. III and Appendix D 1.

4. Finite-size behavior of topological invariants

We now consider the finite-size behavior of the invariants
distinguishing the topological and trivial phases. We con-
sider the “scattering invariant” [111] and the Pfaffian invariant
[9,99]. The scattering invariant is defined for an open system
with a junction to a normal lead: SI = sgn det r ∈ [−1, 1],
where r is the reflection matrix. When SI = −1, there is an
MZM at the junction. The scattering matrix r depends on how
open or closed the junction is. In a finite-sized system, an
MZM at a junction will hybridize with the MZM at the other
end of the wire with strength e−L/ξ (0) (giving SI = +1) unless
it is coupled more strongly to the lead. If the MZM couples
poorly to the leads, then we will erroneously find SI = +1.
If the MZM couples more strongly to the lead than to its
partner at the other end, then we will have SI = −1 in a finite-
size system. Note, however, that we will also find SI = −1
if the second MZM is much closer than distance L but has
small hybridization with the one at the junction, namely, the

“quasi-MZM” scenario [46–49,51]. The Pfaffian invariant Q
is defined for a closed system as the relative sign of the ground
state parity between periodic (PBC) and antiperiodic (APBC)
boundary conditions. Q = sgn[Pf(APBC)] sgn[Pf(AAPBC)] when
the Bogoliubov–de Gennes Hamiltonian is written in terms of
real fermionic operators γ2i−1 = ci + c†

i , γ2i−1 = −i(ci − c†
i )

so that it takes the form H = (i/2)
∑

i, j Ai jγiγ j . In a finite sys-
tem, we will have Q = −1 when the hybridization of the two
MZMs is larger via the periodic boundary condition that con-
nects the two ends than the e−L/ξ (0) hybridization that occurs
through the bulk of the wire. In summary, both invariants rely
on e−L/ξ (0) being smaller than the coupling to the lead or the
boundary condition. This is the limit in which the topological
phase can be defined; it becomes more clearly distinct from
the trivial phase in a continuous fashion as e−L/ξ (0) → 0. In
the next section, we will use the Pfaffian invariant to illustrate
the combination of finite-size effects and disorder on the phase
diagram. In Appendix E 3, we will use the scattering invariant
to test the accuracy of the TGP because the scattering invariant
can be calculated for the same device geometry and junction
settings as used in transport simulations and measurements.

APPENDIX B: ELECTROSTATIC CALIBRATION
FROM HALL BARS

Each of the topological gap devices described in the main
text is accompanied by a Hall bar device subject to the same
growth and fabrication processes; this Hall bar enables a
characterization of the bulk material quality. The full den-
sity dependence of the Hall mobility has been widely used
previously to identify and quantify dominant scattering mech-
anisms in 2DEGs [109,145,147–154]. In particular, across all
samples, the low-density mobility rapidly increases with in-
creasing density, consistent with the mobility being dominated
there by scattering from the long-range Coulomb potential of
remote impurities.
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FIG. 25. Measurements of transverse and longitudinal resistance in the Hall bar device proximate to device A. These raw data underpin the
density and mobility data used in the impurity density extraction. (a) Image of the Hall bar device on the same chip as device A. (b) Transverse
resistance (Rxy) as a function of the applied magnetic field at selected top gate Vg voltages. (c) Longitudinal resistivity as a function of applied
top gate voltage Vg at B = 0.2 T to avoid effects due to weak antilocalization. Different colors correspond to sweeps down (blue) and up
(orange) from [Vth,Vsat], and down (green) and up (red) from [Vth − 0.5 V,Vsat] where Vth is the threshold voltage and Vsat is the saturation
voltage of the Hall bar.

In our simulations, we calculate (i) the gate-voltage depen-
dence of carrier density ne(Vg) for a 2DEG in our materials
stack in a standard Schrödinger-Poisson framework; and (ii)
the remote-impurity-limited mobility μ(Vg) in the Boltzmann-
Born formalism. Both of these functions are parametrized
by the density and location of impurities, and an effective
composite dielectric permittivity. These parameters are used
to simultaneously fit the model traces to experimental data.
As mentioned in the main text, our best fits to density and
mobility measurements over a variety of samples suggested a
simplification in which an effective 2D impurity density n2D,int

is placed in an “impurity layer” at the interface between the
barrier and the gate dielectric. Small changes in the position
or width of the impurity layer can be compensated by tuning
the impurity density, but large changes modify the overall
density dependence of the mobility and result in poor fits.
Therefore, the values of charge impurity density that we quote
here depend on the disorder model employed, with the goal
of this model being to provide a consistent description of the
impact of fixed charges on both the Hall mobility and TGP
measurements. Figure 25(a) shows an SEM image of a Hall
bar used for 2DEG mobility measurements on the same chip
as device A (with the proximity shown in the optical image in
Fig. 5). Figure 25(b) shows the Hall resistance as a function
of perpendicular field for a sequence of gate voltages, from
which we extract the density as a function of gate voltage.
Figure 25(c) shows the longitudinal conductance as a function
of gate voltage. By combining Figs. 25(b) and 25(c), we
obtain the mobility as a function of density.

Figure 26 shows the mobility versus density for this Hall
bar proximate to device A [note that the low-density upturn
in ne(Vg) and non-single-valued μ(Vg) arise due to a measure-
ment artifact and these points are excluded from the fitting].
The solid black lines represent our point estimate traces corre-
sponding to the most-probable values of the effective impurity
density, n2D,int = 2.7× 1012/cm2, and effective dielectric per-
mittivity.

Using similar analyses, we extracted the corresponding
effective charged impurity densities at the interface with the
dielectric for devices C–F yielding 1.1×1012/cm2, 1012/cm2,
3.1×1012/cm2, and 3×1012/cm2, respectively.

APPENDIX C: LOCALIZATION LENGTH
UNDER ALUMINUM

In this Appendix, we elaborate on the measurement of the
localization length �loc in proximitized nanowires, which was
briefly summarized in Sec. II E. We begin with the follow-
ing observations. A modest in-plane magnetic field (B ∼ 1 T)
perpendicular to the wire will close the induced gap in all the
segments of the semiconductor nanowire while the aluminum
remains superconducting with a slightly suppressed parent
gap �Al ≈ 200 µeV. When this occurs, GRL will be nonzero
over the entire range of bias voltages from Vb = 0 to �Al.
At small bias, the typical nonlocal conductance GRL depends
on the length of the wire as GRL(Vb) = A exp[−2L/�loc(Vb)]
and similarly for GLR. To extract �loc, we will mea-
sure the nonlocal conductances of segments of different
length L.

A schematic of the device used for this measurement is
shown in Fig. 27. The device consists of a hybrid InAs/Al

FIG. 26. Measured density and mobility vs gate voltage (as well
as mobility vs density) from a Hall bar proximate to device A.
Orange points indicate the low-density data used in the fit. Solid
lines are the simulation result corresponding to the most-probable
impurity density, n2D,int = 2.7×1012/cm2, and dielectric permittivity.
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FIG. 27. (a) Schematic of a nanowire device design with multiple
gate-defined sections of different lengths. Sources s1–4 contact the
semiconductor quantum well. (b) The measurement configuration to
measure conductance of a single section. The junction gates for the
section under measurement are set to a positive voltage to contact
the semiconductor. The plunger gate of this section will be varied
during the measurement and all other gates are set to highly negative
voltages to deplete all semiconductor states as described in the main
text. The nonlocal conductance is then measured with the aluminum
nanowire grounded. This measurement is then repeated for all sec-
tions of the nanowire.

nanowire as described in the main text. Sections of different
length are defined by the plunger gates, having L1–3 in the
schematic. Ohmic contacts are made to the semiconductor at
several positions along the wire (S1–4) and the coupling to the
wire is controlled by junction gates. By measuring GRL and GLR

between sources 3 and 4, we obtain these conductances for a
wire of length L = 1 µm. Between sources 2 and 3, a wire of
length L = 2 µm; between sources 2 and 4, a wire of length
L = 3.5 µm; sources 1 and 3, a wire of length L = 6.5 µm;
sources 1 and 4, a wire of length L = 8 µm. The wire width,
charged disorder n2D,int, and junction transparencies are kept
similar for different length wire segments. The latter is accom-
plished by opening the junctions to reduce the dependence of
GRL and GLR on the disorder configurations within each of the
junctions.

We now describe the measurement of the semiconduc-
tor conductance for the section between s2 and s3. The
gate voltages are configured as illustrated in Fig. 27(b). The
gates controlling the coupling between the contacts and the
nanowire are set at a positive voltage, so that the semicon-
ductor underneath these gates is in accumulation. In this
configuration each source has approximately the same contact
resistance to the semiconductor under aluminum.

As noted above, a modest in-plane magnetic field is applied
so that the semiconductor enters the normal state while the
aluminum remains superconducting. The nonlocal conduc-
tance is then measured between s2 and s3 while the aluminum
is grounded. All gates outside the section under measurement

are set to highly negative voltages so that no semiconductor
states are populated. Transport is then allowed at energies
below the aluminum gap between the two contacts, while
carriers that tunnel through the barrier material into the alu-
minum are drained to ground and do not contribute to the
measured conductance. This behavior can be seen in Fig. 6(a),
the conductance is approximately zero at energies above the
aluminum gap. At energies below the parent gap the conduc-
tance of the semiconductor is measured.

APPENDIX D: TGP SUBTLETIES

1. TGP measurements

First, to accelerate the search for ZBPs in Stage 1, rather
then doing lengthy bias-voltage sweeps, we employ the third-
harmonic (3ω) technique described in Ref. [155]. This gives
a direct measurement of d3IR/dV 3

R , which is the curvature of
the local conductance dIR/dVR. When d3IR/dV 3

R is negative
and above the noise level, it indicates the presence of a ZBP.
Using this technique, we are able to scan over a large area
in phase space by varying four parameters: B,Vp, and the
two cutter gate voltages Vlc, Vrc that modulate the junction
transparencies. We further facilitate this by restricting the
cutter gate voltages so that GN at each junction is limited
to the range 0.1–1 e2/h as a compromise between sufficient
visibility and remaining in the tunneling regime. In Stage 2,
we will also sweep Vb, but will restrict (B,Vp) to smaller
ranges.

Second, GLR and GRL may receive contributions from line
impedances in the measurement circuit, which we account for
by taking the full impedance network into account [156]. In
addition, we correct for finite-frequency effects by calibrating
the resistances and capacitances in the measurement circuit, as
explained in Appendix G. Finally, we remove any remaining
voltage divider corrections and improve SNR by focusing on
the parts of the nonlocal conductances that are antisymmetric
in bias voltage, A(GRL ), A(GLR ):

A[(GRL(Vb)] ≡ [GRL(Vb) − GRL(−Vb)]/2 (D1)

and similarly for GLR. A discussion of relevant multi-
terminal conductance symmetry relations may be found in
Ref. [157].

Third, the transport gap extracted from A(GRL ) will not,
in general, be the same as that extracted from A(GLR ). The
underlying transport gap is the same, but the two nonlocal
conductances may not be the same due to the different ways
in which local matrix elements enter GLR and GRL. [We will
see an example of this in simulated data in Figs. 29(b) and
29(c) in Appendix E 3.] This can obscure a gap narrowing
or closing. Hence, for any given Vp and B, we determine the
induced gap as the lower of the gaps extracted from A(GRL )
and A(GLR ). Consequently, the observation of nonvanishing
A(GLR ) or A(GRL ) at bias voltages approaching zero is a signa-
ture of a bulk gap closing. Note that the energy spectrum can
be gapless due to the presence of disorder-induced localized
states at low energies. The observed transport gap, extracted
from A(GLR ) and A(GRL ), is the gap that we really care about
since it is more predictive of qubit performance.

A fourth subtlety is that A[GLR(VR )], A[GRL(VL )] can be
either positive or negative, depending on whether transport at
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that bias voltage is primarily due to electrons or holes. It can
change sign as the matrix elements change as a function of
B or Vp, passing through zero when this occurs [110]. Such a
sign change can appear as a very sharp increase in the induced
gap, centered about some B or Vp value. In determining the
zero-field induced gap, we simply avoid these points. The
situation is slightly more complicated for the topological gap
since it varies between zero at the phase transition and a max-
imum value that determines the stability of the topological
phase. Hence, we will report both the median value of the
gap over the SOI2 and also its maximum value. However, we
will not extract the maximum from the single point at which
it is largest. It is not uncommon to have a very small region
over which the extracted topological gap is very large because
one of the aforementioned sign changes occurs, suppressing
the signal in GLR and GRL. Hence, we define the “maximum
topological gap” �max

topo to be the upper quintile of measured
gap values within SOI2.

We add a note of caution here that the measured values of
�ind and �max

topo are transport gaps, which are the lowest energy
at which there is an excited state whose localization length is
longer than the device length; they can be larger than the �ind

or �max
topo expected for a clean system.

Fifth, we clarify the definition of the gapless boundary of
an SOI2. The boundary of the region is defined to consist of
all points inside the SOI2 that neighbor the exterior of the
SOI2 on the side or diagonally. Each such boundary point is
then considered gapped if all of the neighboring points outside
SOI2 are gapped. Otherwise, the boundary point is considered
gapless. Using this definition, we extract the fraction of the
boundary points that are gapless.

2. TGP parameters

The TGP is parametrized by thresholds that were fixed
by an initial set of calibration simulations described in
Appendix E 2 and then tested extensively by large-scale sim-
ulations for different disorder levels and device designs, as
described in Appendix E 1. As a result, we have high confi-
dence that ROI2s overlap with the regions in parameter space
where there is a topological phase, as we quantify in Ap-
pendix E 1.

In principle, this protocol is designed to detect any topolog-
ical phase with a sizable gap. Finite experimental resolution
and temperature, however, may obfuscate some of the topo-
logical signatures, giving rise to subtleties when interpreting
the data that we discuss here.

A wire may have MZMs, but one or both of them may be
slightly displaced from the end of the wire for some choices
of junction transparency and, therefore, may not be visible.
[Indeed, we see in Fig. 2(c) that the local density of states
can be peaked a few hundred nanometers away from the
junction in a simulation of an ideal disorder-free device.] For
this reason, we do not insist that a ZBP be present for all
junction configurations and, instead, consider a ZBP to be
stable in Stage 1 if it is visible for at least 70% of measured
junction transparencies. We define the “cutter gate fraction”
as the fraction of junction transparencies (or, equivalently,
cutter gate settings) for which a ZBP is present. For instance,
suppose we pick 5 cutter gate voltages Vrc at the right junction

such that GN at the right junction takes the values 0.35, 0.49,
0.62, 0.76, 0.9e2/h and similarly pick 5 cutter gate voltages Vlc

at the left junction so that GN at the left junction ranges over
the same five values. The precise sampling over cutter pairs
varies between the measurements presented in this paper, but
there are always at least 20 cutter gate voltage pairs. Then,
a (B,Vp) point will be said to exhibit stable ZBPs at both
junctions if there are ZBPs at both junctions for >70% of
cutter gate pairs (Vlc,Vrc).

For Stage 2, we set a threshold percentage (ZBP%)th

and define a stable ZBP as one that is visible for at least
(ZBP%)th of junction transparencies. As we discuss further
in Appendix E 2, we use calibration simulations to inform the
choice (ZBP%)th = 60% for the device parameters consid-
ered in this paper. For the junction transparencies given as an
example in the previous paragraph, we would perform Stage
2 measurements for 5 different cutter gate pairs (Vlc,Vrc) such
that GR

N = GL
N = 0.35, 0.49, 0.62, 0.76, 0.9e2/h. A stable ZBP

in Stage 2 would then need to be present for 3/5 cutter gate
pairs.

A gap closing may not be visible even when it is present
because A(GRL ) and A(GLR ) tend to be small at low-bias
voltage (due to their antisymmetry in bias voltage) and will
be suppressed even further by disorder and nonuniformity.
Another reason why an SOI2 may be gapless along less than
100% of its boundary is that neighboring gapped regions may
have been misidentified as nontopological (e.g., due to weak
coupling of the MZMs to the leads or ZBP splitting due to a
small topological gap). In case of such misidentification, such
regions should actually be included in the SOI2, which would
be larger and gapless along its entire boundary. To account
for both of these possibilities, we set a threshold percentage
(GB%)th. In order to qualify as an SOI2, a cluster must be
gapless along at least (GB%)th of its boundary. As we discuss
in Appendix E 2, we use simulated transport data to inform the
choice (GB%)th = 60% for the device parameters discussed
in this paper.

The nonlocal conductances A(GRL ) and A(GLR ) will never
truly vanish at zero bias because there will at least be tunnel-
ing e−L/ξ (0) and thermally activated e−�tr/T contributions.10

Hence, we need to give an operational definition for A(GRL ) ≈
0 and A(GLR ) ≈ 0. To do this, we define a threshold value Gth.
Then, if A[GLR(VR )], A[GRL(VL )] < Gth, we interpret this as
A[GLR(VR )], A[GRL(VL )] ∼ O(e−L/ξ (0), e−�/T ). The extracted
gap is obtained using the highest bias voltage Vb below which
A[GLR(Vb)] < Gth and A[GRL(Vb)] < Gth. The choice of Gth

should depend on �/T and L/ξ (0) and also on the trans-
parency of the junctions. For the disorder strengths expected
in our devices, we take Gth equal to exp(−3) ≈ 0.05 times
the maximal value max{GNL} of the nonlocal conductance at
bias voltages greater than the induced gap (scanning over all
B for each Vp for a given cutter configuration). As we discuss
later in this section, this choice of Gth was set by applying the
TGP to calibration data from simulated devices with n2D,int =
2.4×1012/cm2. For weaker disorder n2D,int � 1012/cm2, the
optimal value of Gth should be smaller because L/ξ (0) � 1

10See also Ref. [158] for additional considerations that are relevant
to the nonlocal conductance.
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and the transition becomes sharper in this limit. If we do
not take a smaller Gth, the TGP will miss gap closings and
will erroneously interpret A(GRL ) and A(GLR ) data as indi-
cating that the gap remains open. Defining Gth in terms of
the high-bias conductance max{GNL} enables us to define it
equally well for simulated data as for measured data (unlike,
for instance, a Gth that depends on the noise level in a par-
ticular measurement setup). When we plot either simulated or
measured A[GLR(V )], A[GRL(V )], we will use a black curve to
indicate the bias voltage (as a function of B field) below which
each one is less than Gth [see, e.g., Figs. 29(e) and 29(f)].
We can restate the threshold defined in this paragraph as fol-
lows: There is a truly sharp distinction between the trivial and
topological phases only in the infinite-size, zero-temperature,
and infinitesimal transparency limits; hence the threshold
gives a simulation-tested method for finding the rounded
transition.

Finally, we note that the extracted transport gap and, there-
fore, the phase diagram depend on the junction transparencies
(and, thereby, on the cutter gate voltages that control them).
The phase diagram must be stable to changes in the cutter gate
voltages in the following sense: we require that a device pass-
ing the TGP must have a CA

i ∈ T for a threshold percentage
(Ci%)th (see below) of cutter gate pairs i. In other words, in
order to pass the TGP, a fraction (Ci%)th of cutter gate settings
must have at least one CA

i that is a subset of the ROI2. We
will take (Ci%)th = 50%. This combination of the stability
thresholds for ZBPs, gap closing and reopening requirements,
and the overlap of the resulting SOI2 is sufficient to virtually
eliminate false positives when analyzing simulated data, as we
shall see below in Appendix E 1.

APPENDIX E: CALIBRATING AND TESTING THE TGP
WITH DATA FROM SIMULATED DEVICES

In this Appendix, we use simulations to quantify the re-
liability of the TGP. Our transport simulations begin with
three-dimensional models of the devices in Figs. 2 and 3
that include the electrostatic environment defined by the set
of gate voltages. We identify the Vp range for which the
chemical potential is in the lowest sub-band and the cutter
gate voltages for which the junction transparencies take the
5 values GN = 0.35, 0.49, 0.62, 0.76, 0.9e2/h. The resulting
single-sub-band parameters are given in Table I and Fig. 23.
For this gate voltage set, we perform transport simulations and
calculate the scattering matrix of the system. The local and
nonlocal conductances GLL, GRR, GLR, GRL are then obtained
by convolution with the derivative of the Fermi function at
temperature T . We analyze these data according to the TGP
according to the same procedure that we will use in Sec. IV to
analyze experimental data.

1. False discovery rate

The basic question that we wish to answer is as follows:
Suppose the TGP returns an ROI2 that passes; what is the
probability that it does not have any overlap with the topologi-
cal phase? The goal of TGP calibration is to set thresholds that
minimize this probability. Once the TGP has been calibrated,
we test it to assess whether this probability is low when the

TGP is applied to a range of device types and parameters:
different junction designs, different material parameters such
as spin-orbit coupling, different disorder strength.

To compute this probability in simulations, we compare
ROI2s with a topological index (the “scattering invariant”
[111]). We classify ROI2s as follows: if an ROI2 has any
overlap with a region of the simulated phase diagram with
scattering invariant −1, then we will call it a true positive;
otherwise, it is a false positive. In Sec. III [see Eq. (4)],
we defined the classification of regions as TP and FP, and
derived the FDR from these numbers in order to quantitatively
measure the reliability of the TGP.

Note that this is a classification of regions, rather than a
classification of devices. Hence, if a device that does have
a topological region were to pass the TGP but its ROI2

were completely disjoint from the topological region, then
this ROI2 would be a false positive. We do not attempt to
count negative regions: an arbitrary region is very likely to
be negative, so the number of negative regions is not a useful
statistic.11 Therefore, we do not compute the false positive
rate (FPR), given by FP/(FP + TN), where TN is the num-
ber of true negatives. The FPR is less useful for the present
discussion.

There is a further subtlety, which is that the scattering
invariant depends on the junction transparencies. Since our
device has two junctions, the scattering invariant can be de-
fined at either one: SIi = sgn det ri ∈ [−1, 1], where ri is the
reflection matrix and i = L, R. When the junctions are com-
pletely closed, both SIi are trivially equal to +1. When the
junctions are opened, SIi = −1 regions can appear, and they
tend to grow as the junctions are opened further. Thus, we
must decide how to assign a topological index to a finite
system. We will define the topological region of the phase
diagram as the union of the SIi = −1 regions over i = L, R
and the 5 different pairs of junction transparencies used in
TGP Stage 2. We will call this union the “SI = −1 region.”
Instead of taking the union of the SIi = −1 regions, we could
have taken the intersections. In our simulations, SIR = −1
and SIL = −1 regions overlap but not completely. For some
cutter gate settings, only SIR = −1 while for others SIL = −1
because a zero-energy state can couple poorly to the lead at
one junction or the other for different cutter gate settings. Our
definition of the topological index is relatively insensitive to
these details of the junctions. If we had wanted to use the Pfaf-
fian invariant [9], we would have had to truncate the system to
remove the junctions and then imposed periodic/antiperiodic
boundary conditions. This would no longer be the same device
as we would be probing in transport.

A final technical detail: the conductance matrix is temper-
ature dependent, and the output of the TGP has a resulting
temperature dependence. As we discuss in Sec. IV, the base
temperature of our dilution refrigerators during these mea-
surements is 20 mK, and the electron temperature is estimated
to be � 40 mK. We use transport data at 30 mK for our

11On the other hand, a “negative device,” which is a device that fails
the TGP, is a natural concept. We return to it later when we define the
TGP yield, which is the probability that a device will pass the TGP: in
other words, the complement of the probability of a negative device.
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calibration simulations. We test the TGP using simulated data
at 40 mK, and we used these simulated data in our estimates
of the FDR and other statistical properties.

The main result of the subsections that follow is that we
estimate that the FDR is � 8% at a 95% confidence level
for all device designs, material stacks, and disorder levels
simulated. Thus, when a device passes the TGP, there is >92%
probability that it has a nonzero gap and SI = −1. The details
are in Table II.

2. Setting the TGP thresholds

As discussed in Appendix D 2, there are three key thresh-
olds which parametrize the TGP: (ZBP%)th, (GB%)th, and
Gth. We choose these parameters so that the TGP has a low
FDR. If we were to make it very difficult to pass the TGP,
then we would have very few false positives but also few true
positives, and the FDR could be large. If we make it too easy
to pass the TGP, then will have many more true positives
but also more false positives. However, the right choices of
(ZBP%)th, (GB%)th, and Gth lead to a TGP which is reliable
because it has low FDR.

We performed an initial calibration of the TGP by analyz-
ing simulated transport data at T = 30 mK from 28 disorder
realizations of an SLG-β device with an average charged
defect density of n2D,int = 2.4×1012/cm2 and spin-orbit inter-
action α � 13 meV nm. We did not find any false positives:
every ROI2 has at least some subset with SI = −1. How-
ever, the number of true positives and, hence, the FDR varies
with the threshold values. We find that (ZBP%)th = 60%,
(GB%)th = 60%, and Gth = 0.05 max{GNL} is close to opti-
mal. There are 53 ROI2s spread across the 28 devices (all
true positives) for these threshold settings. Hence, the FDR
is <6.7% at the 95% confidence level. Had (ZBP%)th and
(GB%)th been set lower, we would have found ROI2s that did
not contain a region with SI = −1. For higher (ZBP%)th and
(GB%)th, we would have had fewer devices passing the TGP.
If we had set Gth too low, then too much of the phase diagram
would have been classified as gapless, thereby concealing
gap reopenings. If we had set Gth too high, then too much
of the phase diagram would have been classified as gapped,
obscuring gap closings. Note that the two thresholds (GB%)th

and Gth are correlated.
We show two realizations of simulated SLG, β-stack de-

vices in Appendix E 5, one that passes the TGP and one that
fails.

3. Testing the TGP

With the TGP thus calibrated and validated, we turn to
simulations estimating the FDR. Since we will be analyzing
experimental data from devices with different designs, mate-
rial stacks, and disorder levels, we apply the TGP to simulated
SLG-β and DLG-ε devices with several different charge dis-
order levels. For charge disorder given by n2D,int � 1012/cm2,
we use the thresholds obtained in the calibration described
above, whereas in the cleaner case of 0.1×1012/cm2 we lower
Gth from 0.05 to 0.01 while leaving the other thresholds un-
changed. Although the optimal values of the thresholds in the
TGP depend on the temperature, design, material stack, and

disorder level, our goal here is to show that, for the thresholds
chosen, the TGP remains reliable across a range of designs,
material stacks, and disorder levels, and at a slightly higher
temperature. The motivation is that we would like to apply the
TGP in cases in which neither the electron temperature nor
the disorder level is known precisely. Note, however, that if
either the disorder level or temperature were very different,
then we would probably need to adjust (ZBP%)th, (GB%)th,
and Gth.

To estimate the FDR, we performed large-scale simula-
tions involving 349 different disorder realizations, distributed
across SLG-β and DLG-ε devices with intermediate to strong
disorder levels defined by charge impurity densities of 0.1, 1,
2.7, and 4 in units of 1012/cm2, as shown in Table II. The Hall
bar measurements described in Appendix B indicate that the
devices experimentally measured in this paper have n2D,int val-
ues in this range. The defect density n2D,int = 2.7×1012/cm2

is the largest of any of the measured devices reported in this
paper that has passed the TGP, while n2D,int = 4×1012/cm2

is larger than in of any of the devices reported in this paper,
including those that failed the TGP. Several of our measured
devices have n2D,int values at or below 1012/cm2.

We calculate the conductance matrix (2) for each simulated
disorder realization at T = 40 mK and analyze these data
according to the TGP, as we would with experimental data.
This analysis yields ROI2s; many disorder realizations, espe-
cially with stronger disorder, have none, while some disorder
realizations, typically with weaker disorder, have multiple
ROI2s. We compare these ROI2s to the scattering invariant
and classify each ROI2 as a TP or FP depending on whether
any subregion of the ROI2 has SI = −1. We find the statis-
tics given in Table II. From the TP and FP values obtained
from these simulations, we estimate the FDR by assuming a
binomial distribution and use the Clopper-Pearson confidence
interval at a 95% confidence level.

We do not have a single false positive in these data. This
does not mean that the TGP perfectly identifies the topo-
logical region. Our results show that the TGP identifies an
ROI2 that has nonzero overlap with the SI = −1 regions in
the phase diagram. However, part of the ROI2s identified by
the TGP do not have SI = −1 and much of the SI = −1
region lies outside the ROI2, as we will see in the examples
that we discuss in Appendix E 4 and Appendix E 5. This
is not surprising since, as we discussed in Appendix A 4,
there is some inherent ambiguity in defining the topologi-
cal phase in a finite system. When we restrict the magnetic
field to B � 2.5 T, we find one false positive for an SLG-β
device with n2D,int = 1.0×1012/cm2. By restricting the mag-
netic field, the normalization of the conductance changes
slightly, and a candidate SOI2 for one cutter gate setting
is classified as gapped with a very small gap; for a larger
B-field range, it is classified as gapless and the regions fail
the TGP.

Our analysis of the FDR indicates that TGP reliably iden-
tifies an SI = −1 region for different disorder levels and for
different device designs. Indeed, as summarized in Table II,
there are only small differences in the estimated FDR values
for the above-mentioned parameters, and they are primarily
due to the different numbers of ROI2s for various disorder
levels. Thus, the TGP at these threshold values can be applied
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TABLE V. The analogous table to Table IV with magnetic field
restricted to the range B � 3 T.

Design, n2D,int Yield �̄max
topo V̄SOI2 B̄SOI2

stack [1012/cm2] �3 T [µeV] [mV T] [T]

SLG-β 1.0 48/50 23 0.2 2.1
2.7 24/50 34 0.1 1.5
4.0 26/49 36 0.1 1.5

DLG-ε 0.1 48/50 26 0.2 2.6
1.0 43/50 29 0.2 2.6
2.7 33/50 28 0.2 2.6
4.0 35/50 28 0.2 2.6

to a large class of topological gap devices with intermediate
disorder strength.

Our simulations also give us information about how the
disorder level and device design affect the probability that a
device will pass the TGP. We define the TGP yield as this
probability:

TGP yield ≡ P(Device passes TGP). (E1)

As may be seen from Table IV, the TGP yield depends
strongly on n2D,int . More disordered devices are less likely to
pass the TGP because they are less likely to have a topological
phase.

We now consider the statistics of the SOI2s that the TGP
finds. Table IV shows these statistics when the magnetic field
is restricted to B � 2.5 T, while B � 3 T in Table V. We
find that �max

topo has mean value �̄max
topo that varies between 25

and 35 µeV for different disorder strengths and has a non-
Gaussian distribution with long tails towards larger gap. A
smaller mean value is observed at the lowest disorder levels
because there are significantly more SOI2s at weak disorder,
and many of them have small �max

topo. The mean volume in
the B-Vp parameter space of an SOI2, denoted V̄SOI2, is of
the order 0.1 mV T and decreases with increasing disorder
strength (see Table IV). As with �̄max

topo, the distribution of
V̄SOI2 is non-Gaussian with long tails. Finally, the average B
field at which we observe SOI2s ranges between 1.5 and
2.6 T. As expected, ε-stack devices have SOI2s that occur at
higher magnetic fields >2 T since they have larger �ind and
smaller g�.

4. Example of the TGP applied to a single disorder realization

To illustrate the TGP, we now focus on a particular disorder
realization in a narrow 3 µm long device based on the DLG,
ε-stack design. This is one of the devices that appears in
Tables II and IV. We will call this simulated disorder real-
ization DLG-ε-R1 for brevity. We have applied the TGP to
T = 40 mK transport data for this device, which we discuss
in detail below, explaining the different stages of the TGP
through this example. We also compare an SOI2 identified by
the TGP with the topological region determined by SI = −1.
In Appendix E 5, we discuss simulated data from two other
devices that we call realizations SLG-β-R1 and SLG-β-R2.

Stage 1: Stage 1 focuses on ZBPs in the local conductance.
From the local conductances GRR and GLL, we can map out the

regions in (B,Vp) space where there are stable ZBPs at the two
junctions, where “stable” means that the ZBPs are present for
a cutter gate fraction >70%, as described in Appendix D 2.
For simulated disorder realization DLG-ε-R1, the locations
of stable ZBPs at the left junction are shown in Fig. 28(a)
and at the right junction in Fig. 28(b). A topological phase
should have stable ZBPs at both junctions at the same B
and Vp, so Fig. 28(c) shows the phase space locations where
there are stable ZBPs at both junctions. This is the output of
Stage 1 of the TGP. The entire gate voltage range shown here,
−0.735 V � Vp � −0.665 V, lies within the lowest sub-band.
There is a trivial zero-energy state at the left junction over a
region in the B-Vp plane that traces out a parabolic shape start-
ing around (B,Vp) = (1.2 T,−0.69 V). However, this ZBP is
unstable (i.e., fine-tuned) with respect to cutter changes and,
therefore, is filtered out by the TGP. The ROI1 identified by
the TGP is a smaller region at higher B and lower Vp where
there are stable ZBPs at both junctions.

Stage 2: In Stage 2, we focus on the neighborhood of the
ROI1 identified in Stage 1. Stage 2 analyzes local and nonlocal
transport data over a range of bias voltages. In the simulated
data, unlike in the experimental data discussed in Sec. IV,
there is no drift of the plunger gate voltage Vp, so the ROI1 is
automatically recovered from local transport data. However,
we do obtain the dependence of GRR and GLL on the bias
voltage, as seen in Figs. 29(c) and 29(d). The more significant
new ingredient in Stage 2 is the bias dependence of the nonlo-
cal conductances GRL and GLR, from which we determine the
transport gap as a function of B and Vp. For simulated disorder
realization DLG-ε-R1, the nonlocal conductances GRL, GLR

and the derived gap (indicated by black curves) as a function
of B for Vp = −0.7205 V are shown in Figs. 29(e) and 29(f).
We give 5 significant digits after the decimal point for Vp so
that these values can serve as indices in the relevant data files;
this may be convenient for readers wishing to look directly at
the data underlying the figures in this paper. Note that this
cut passes through the topological phase transition and the
topological phase; a gap closing and reopening is seen in GRL

and GLR. Combining the local and nonlocal information, we
can classify any point in phase space as gapped without stable
ZBPs, gapped with stable ZBPs, gapless without stable ZBPs,
or gapless with stable ZBPs. These are depicted in Fig. 29(a)
as, respectively, blue, orange, white, or yellow. If an orange
region is surrounded by white or yellow along more than 60%
of its boundary, we identify it as an SOI2, and give it a black
boundary in Fig. 29(a).

In addition to stable ZBPs, we also observe some zero-
energy states that have a nontopological origin, as noted in
our Stage 1 analysis. These trivial Andreev bound states
(ABS) can be caused by resonances arising from the local
electrostatic potential, local disorder, or a combination. We
give some examples of their spectroscopy in Appendix E 5.
While the presence of these ABSs can be limited by careful
design of the junctions, they can never be fully suppressed.
When running the TGP in experiments, we take care to tune
away from pathological points in junction phase space as
much as possible, while stepping between different junc-
tion configurations as we tune GN to span from 0.1e2/h
to e2/h.
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FIG. 28. The TGP applied to simulated transport data for DLG with n2D,int = 1012/cm2 and 40 mK temperature broadening, highlighting
regions of phase space with stable ZBPs in (a) GLL and (b) GRR. (c) Regions of phase space with stable ZBPs in both GLL and GRR. Simulated
transport data such as this are used to test the TGP. Here, we show one particular disorder realization for illustrative purposes. Any possible
visible resemblance to measured data is dependent on the disorder realization and does not play a role in our analysis.

As we can see in Figs. 29(a) and 29(b), the TGP finds a
region of topological phase [shown in orange in Fig. 29(a) and
red in Fig. 29(b)] around B = 2.55 T, Vp = −0.72 V with a
maximum topological gap �max

topo = 41 µeV, which is the upper
quintile of the gaps extracted in the SOI2.

The topological gap increases from zero at the phase tran-
sition to �max

topo in such a way that its median value over the
red region within the black line in Fig. 29(b) is 26 µeV. The
TGP phase diagram is compared with the scattering invariant.
In Fig. 29(a), the region with SI = −1 is hatched. As may be
seen in Fig. 29(a), the region identified by the TGP lies almost
entirely within the region with negative topological index, i.e.,
the TGP is fairly conservative and identifies a subset of the
topological phase. It is not a perfect match, of course, since
the TGP is not directly calculating the scattering invariant and,
moreover, the phase transition is rounded by finite temperature
and finite-size corrections. Note the similarity between the
hatched regions with negative topological index in Fig. 29(a)
and the bright orange regions. The regions that pass the TGP
are smaller pockets within these splinters.

Figure 29(b) is another version of the phase diagram
for this disorder realization: it shows the transport gap ex-
tracted from GRL and GLR multiplied by q = ±1, depending
on whether that point lies outside or inside the SOI2. Note
that q is not the same as the topological invariant Q that is
used analogously in the color scale in Fig. 4 (where Q is the
Pfaffian invariant); rather, q is the proxy for Q that results
from the TGP. The color scale of Fig. 29(b) can be viewed
intuitively as the magnitude of the bulk gap multiplied by
a proxy for the sign of the topological invariant. Darker red
corresponds to larger topological gap.

As expected, there are some points along the boundary of
the SOI2 where the closing is not visible in either GRL or GLR.
For this cutter gate pair in this particular disorder realization,
67% of the boundary of the SOI2 shows a gap closing in GRL,
GLR, which is above (GB%)th.

A comparison between the orange region in Fig. 29(a) and
the hatched region lends credence to the idea that the part of

the boundary that is gapped is not actually a boundary at all,
and the true boundary is at higher B and lower Vp. The blue
region below and to the right of the orange region is hatched,
indicating that it has been misclassified as nontopological.
However, as may be seen in Fig. 29(b), this gapped (and
ostensibly topological) region below and to the right of the
SOI2 is light blue, indicating that it has a small gap. Hence,
if it were topological, it would have a small topological gap
and would not be useful for a topological qubit, in contrast to
the darkest red regions within the SOI2. The same observation
applies to all of the hatched SI = −1 region that lies outside
of the SOI2: it may be topological, but it has a small transport
gap. Moreover, since they do not have stable ZBPs in GLL

and/or GRR, it is unlikely that it would be possible to couple
to these ZBPs in a qubit.

In this section, we discussed a disorder realization for a
DLG-ε device that passed both stages of the TGP and cor-
rectly found the topological phase. In Appendix E 5, we will
show additional data from calibration simulations and discuss
examples that fail the TGP.

5. Simulated disorder realizations
used for the calibration of TGP

In this Appendix, we discuss two examples of simulated
data that were used to calibrate the TGP. One example passes
the TGP and one fails. The parameters of the simulation are
equivalent to those of SLG-β devices with a larger spin-orbit
coupling α � 13 meV nm.

The first realization, called SLG-β-R1, represents the 3 µm
long device with n2D,int = 2.4×1012/cm2. Here we assume
T = 30 mK. Stage 1 data are shown in Fig. 30. There are
stable ZBP clusters in GRR and GLL as well as accidental ZBPs
present for some cutter settings which correspond to disorder-
induced subgap states at the junction. Due to the larger level
of disorder in SLG-β-R1 than in DLG-ε-R1, there are more
such accidental sub-gap states than in Fig. 28. The joint ZBP
map is shown in Fig. 30(c).
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FIG. 29. (a) The simulated phase diagram for DLG, ε stack with n2D,int = 1012/cm2 at T = 40 mK, combining the clusters of stable ZBPs
at both junctions with the map of zero/nonzero gap. We identify gapped/gapless regions, with/without stable ZBPs, according to the color
legend on the left. 67% of the boundary of the SOI2 is gapless. The hatched regions are where the topological invariant is negative. (b) The
simulated phase diagram, showing trivial and topological phases, as identified by the TGP. q = ±1 in the trivial/topological phase, so the color
scale shows the size of the trivial (blue) or topological (red) gap. The protocol assigns a maximum topological gap (defined as the top quintile of
measured gaps within the SOI2) of �max

topo = 41 µeV. Simulated local and antisymmetrized nonlocal conductances at Vp = −0.7205 V: (c) GLL,
(d) GRR, (e) A(GRL ), (f) A(GLR ). The field range between the vertical lines is in the SOI2. Panels (g)–(j) are “waterfall” plots representing the
same simulated data. The black curves in (e) and (f) and the dots in (i) and (j) are not guides to the eye; they indicate where the nonlocal
signal drops below a threshold value, as described in the text. The details of these plots are disorder dependent, and any visible resemblance to
measured data does not play a role in our analysis.

245423-41



MORTEZA AGHAEE et al. PHYSICAL REVIEW B 107, 245423 (2023)

FIG. 30. The TGP applied to simulated transport data for a narrow 3 µm long wire with n2D,int = 2.4×1012/cm2, α � 13 meV nm at T =
30 mK, highlighting regions of phase space with stable ZBPs in (a) GLL and (b) GRR. (c) Regions of phase space with stable ZBPs in both
GLL and GRR. Simulated transport data such as this are used to test the TGP. Here, we show one particular disorder realization for illustrative
purposes. Any possible visible resemblance to measured data is dependent on the disorder realization and does not play a role in our analysis.

The Stage 2 analysis of simulated device SLG-β-R1 is
presented in Fig. 31. Simulated device SLG-β-R1 has an SOI2

around (B,Vp) ≈ (1.5 T,−1.372 75 V). 71% of the boundary
of this SOI2 is gapless; the maximum and median topological
gaps are 30 and 25 µeV, respectively, for this cutter gate set-
ting. Local and nonlocal conductances for Vp = −1.372 75 V
are shown in Figs. 31(c)–31(f). There are stable ZBPs at both
junctions over a range of B fields of extent ≈1.3–1.7 T, and
there is a clear gap closing and reopening as a function of
B. Also, note the similarity between the hatched regions with
negative SI in Fig. 31(a) and the bright orange regions in the
simulated Stage 1 data in Fig. 30.

For the sake of comparison, we also present trivial ZBPs
seen at a different value of Vp = −1.365 75 V in Figs. 31(g)–
31(j) [see upper dotted line in Fig. 31(b)]. However, the
nonlocal conductance data in Figs. 31(i) and 31(j) clearly
show that the system is gapless over the corresponding range
of B field values.

In Fig. 32, we present Stage 2 of TGP for another dis-
order realization, which we call SLG-β-R2. This is one of
the realizations that passed Stage 1 but failed Stage 2. There
are stable ZBPs at both junctions around Vp = −1.36 V, as
may be seen in Figs. 32(c) and 32(d). However, the nonlocal
conductances in Figs. 32(e) and 32(f) yield zero gap. In fact,
the, system is gapless over most of the scanned region, so
this simulated transport data does not pass Stage 2 of the
TGP. This example once again reinforces the fact that lo-
cal measurements alone cannot reliably detect a topological
phase.

APPENDIX F: COMPARISON OF SOI2

FOR DIFFERENT CUTTER PAIRS

In this Appendix we compare the TGP Stage 2 outcome
for different cutter pairs. Figure 11 demonstrates the results
for cutter pair #0 (with GN ≈ 0.3e2/h for both sides) showing

78% gapless boundary and �max
topo = 23 µeV. Results for cutter

pairs #1 (GN ≈ 0.5e2/h) and #2 (GN ≈ 0.7e2/h) are demon-
strated in Figs. 33 and 34 showing 89% gapless boundary and
�max

topo = 26 µeV for cutter pairs #1 and 74% gapless bound-
ary and �max

topo = 21 µeV for cutter pairs #2. This comparison
shows that SOI2s corresponding to the different cutter pairs
are similar. The vertical and horizontal dotted lines in panel
(b) are the same in Figs. 11, 33, and 34; the intersection
of these two lines is always inside the SOI1 which clearly
demonstrates that they overlap.

APPENDIX G: THREE-TERMINAL CONDUCTANCE
MEASUREMENTS WITH SEVERAL

HUNDRED HZ EXCITATIONS

The conductance matrix is measured with a standard lock-
in technique, applying simultaneous voltage excitations with
amplitudes dV 0

L ( fL) and dV 0
R ( fR) to the inputs of the left

and right terminals, respectively. They are at frequencies fL

and fR, respectively, and currents dI0
L ( fL) and dI0

L ( fR) are
measured at the left terminal while dI0

R( fL) and dI0
R( fR) are

measured at the right terminal. However, due to the finite
impedance network between the signal input and the mea-
sured sample, the voltages applied and the currents measured
deviate from those at the sample inputs. At lock-in frequencies
of several hundred Hz, the capacitances of the cryostat lines
and filters (on the order of several nF ) combined with the
line and filter resistances have a non-negligible contribution to
the measured currents. Furthermore, a finite resistance at the
drain contact imposes an effective voltage modulation of the
opposing contact as a voltage divider effect. As a result, the
sample experiences voltage modulations dVL( fL) and dVL( fR)
at the left and dVR( fL) and dVR( fR) at the right input. The cur-
rents at the the left terminal are dIL( fL) and dIL( fR) while the
currents at the right terminal are dIR( fL) and dIR( fR). Noting
that dII ( f ) = GIJdVJ ( f ) where I, J = L, R, the conductances
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FIG. 31. (a) The simulated phase diagram for SLG device (disorder realization R1) with n2D,int = 2.4×1012/cm2, α � 13 meV nm at
T = 30 mK, combining the clusters of stable ZBPs at both junctions with the map of zero/nonzero gap. We identify gapped/gapless regions,
with/without stable ZBPs, according to the color legend on the left. 71% of the boundary of the SOI2 is gapless. The hatched regions are
where the topological invariant is negative. (b) The simulated phase diagram, showing trivial and topological phases, as identified by the
TGP. q = ±1 in the trivial/topological phase, so the color scale shows the size of the trivial (blue) or topological (red) gap. The protocol
assigns a maximum topological gap (defined as the top quintile of measured gaps within the SOI2) of �max

topo = 30 µeV. The lower and upper
horizontal dotted lines correspond to the cuts shown, respectively, in (c)–(f) and (g)–(j). (c)–(f) Simulated local and antisymmetrized nonlocal
conductances at Vp = −1.372 75 V: (c) GLL, (d) GRR, (e) A(GRL ), (f) A(GLR ). The field range between the vertical lines is in the SOI2. (g)–(j)
Conductances from the nontopological region (Vp = −1.365 75 V, outside of SOI2). As may be seen by comparing (c) and (d) and (g) and (h),
the local conductances are similar, but the nonlocal conductances in (i) and (j) lack a clear transport gap reopening, distinguishing them from
(e) and (f).

are obtained from

(
GLL GLR

GRL GRR

)

=
(

dIL( fL) dIL( fR)

dIR( fL) dIR( fR)

)(
dVL( fL) dVL( fR)

dVR( fL) dVR( fR)

)−1

. (G1)

Note that we recover Eq. (2) if we take dVL( fR)=dVR( fL)=0.
To proceed, we need a map

M ≡
(

MVV MV I

MIV MII

)
(G2)

between the voltages and currents at the sample, V =
(dVL( f ), dVR( f ))T and I = (dIL( f ), dIR( f ))T , and the
voltages applied and the currents measured, V0 = (dV 0

L,0( f ),
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FIG. 32. Stage 2 analysis for realization SLG-β-R2 at T = 30 mK. (a) The regions with stable ZBPs at both junctions. (b) The gap as
function of B and Vp. It vanishes in the region of interest, so this device fails the TGP. (c)–(f) Local and antisymmetrized nonlocal conductances
at Vp = −1.36 V. The local conductances in (c) and (d) show ZBPs, but there is no gap reopening visible in the antisymmetrized nonlocal
conductances in (e) and (f).

dV 0
R,0( f )T and I0 = (dI0

L,0( f ), dI0
R,0( f ))T :

(
V

I

)
=

(
MVV MV I

MIV MII

)(
V0

I0

)
. (G3)

The impedance network between the input ports and the
measured sample consists of a sequence of stages, each of
which has the general form illustrated in Fig. 35(a): every

line has a capacitance to ground and to every other line in
parallel and a resistance in series to the next stage. The drain
of the measured device is also connected to ground at the input
and is thus included in the circuit here and will be reduced
from the final mapping later. By denoting the terminals as
k = {L, R, D} and l ={L, R, D, G} (where G denotes ground),
the output voltages dVk and currents dIk are determined by the
input voltages dV ′

k and currents dI ′
k , as well as cross-currents

dIkl as

dIk = dI ′
k −

∑
l �=k

dIkl = dI ′
k −

∑
l �=k

Ykl (dV ′
k − dV ′

l ) = −
⎛
⎝∑

l �=k

Ykl

⎞
⎠dV ′

k +
∑
l �=k

YkldV ′
l + dI ′

k, (G4)

dVk = dV ′
k − ZkdIk =

⎡
⎣1 + Zk

⎛
⎝∑

l �=k

Ykl

⎞
⎠

⎤
⎦dV ′

k − Zk

∑
l �=k

YkldV ′
l − ZkdI ′

k, (G5)

where Zk are the impedances (resistances for sufficiently low frequencies) of the lines, Ykl = 2π i f Ckl are the parallel admittances
via capacitors Ckl between k and l , and VG = 0. Equations (G4) and (G5) can be expressed in matrix form as⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

VL

VR

VD

IL

IR

ID

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + ZL
∑

k=R,D,G YLk −ZLYLR −ZLYLD −ZL 0 0

−ZRYLR 1 + ZR
∑

k=L,D,G YRk −ZRYRD 0 −ZR 0

−ZDYLD −ZDYRD 1 + ZD
∑

k=L,R,G YDk 0 0 −ZD

−∑
k=R,D,G YLk YLR YLD 1 0 0

YLR −∑
k=L,D,G YRk YRD 0 1 0

YLD YRD −∑
k=L,R,G YDk 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

V ′
L

V ′
R

V ′
D

I ′
L

I ′
R

I ′
D

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (G6)
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FIG. 33. TGP Stage 2 analysis of the device A (measurement A1). Figure shows the same as in Fig. 11 but for cutter pair #1 corresponding
to GN ≈ 0.5e2/h for both sides. (a) The boundary of the SOI2 is interpreted as a phase transition line, consistent with a visible gap closure
along 89% of it. (b) The protocol assigns a maximum topological gap �max

topo = 26 µeV.
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FIG. 34. TGP Stage 2 analysis of the device A (measurement A1). Figure shows the same as in Fig. 11 but for cutter pair #2 corresponding
to GN ≈ 0.7e2/h for both sides. (a) The boundary of the SOI2 is interpreted as a phase transition line, consistent with a visible gap closure
along 74% of it. (b) The protocol assigns a maximum topological gap �max

topo = 21 µeV.
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FIG. 35. (a) The stage of the impedance network that leads from the input ports to the measured sample. (b) The full network consists of
multiple stages in series.

This has the general form(
V
I

)
=

(
M1

VV M1
V I

M1
IV M1

II

)(
V′
I′

)
≡ M1

(
V′
I′

)
. (G7)

With multiple stages in a sequence, the mapping from the
input to the measured device(

V
I

)
= Mtot

(
V0

I0

)
(G8)

is given by matrix multiplication Mtot = ∏
k Mk where the

matrices Mk are given by Eq. (G6). The 6×6 map Mtot is
further reduced to a more useful 4×4 form by the following
steps:

(1) Imposing current conservation (dID = −dIL − dIR)
at the sample, which then reduces the map to a
5×5 matrix with k ∈ {dVL, dVR, dVD, dIL, dIR} and
l ∈ {dV 0

L , dV 0
R , dV 0

D , dI0
L, dI0

R} which now takes the form

Mred
kl = M tot

kl − (
M tot

dILdI0
D

+ M tot
dIRdI0

D
+ M tot

dIDdI0
D

)−1

×(
M tot

dIL l + M tot
dIR l + M tot

dIDl

)
M tot

kdI0
D
. (G9)

(2) Defining dVL and dVR as potentials with respect to
dVD at the sample, as well as dV 0

D = 0, which leads to the
final 4×4 matrix M with k ∈ {dVL, dVR, dIL, dIR} and l ∈
{dV 0

L , dV 0
R , dI0

L, dI0
R} that takes the form

MVL(R)l = Mred
VL(R)l − Mred

VDl ,

MIL(R)l = Mred
IL(R)l . (G10)

The effect on input voltages and measured currents of addi-
tional filtration from the measurement instruments should also
be incorporated.

For our setup, the mapping M is comprised of four stages
Mk where the resistances are determined by the installed fil-
ters and, for the final stage, are the sample lead resistances

which are extracted independently from the linear I-V re-
sponse in DC measurements. To calibrate the capacitances
in the setup, we measure dI0

L and dI0
R as a function of the

excitation frequency fL of a voltage modulation first applied
to the left port, then as a function of frequency fR of the
modulation applied to the right port when the device is fully
pinched off (i.e., the zero conductance limit). We then use
capacitances between the lines and the ground as fit param-
eters relating the measured dI0

L to fL and dI0
R to fR. Finally,

the mutual capacitance between L and R is obtained as a
fit parameter relating the measured dI0

L and dI0
R to fR and

fL, respectively. In the experiments described in the main
text, the extracted capacitances of the fridge lines and filters,
together with known cutoff frequencies of the voltage sources
and current preamplifier outputs, are then used to calculate
the sample conductances based on the measured dI0

L and dI0
R.

Full details on this calibration routine, including all extracted
parameters that were used to process measured data, can be
found in the accompanying data repository [98].

Note that a further effect of finite resistances on the stages
of the measurement circuit is to rescale the applied DC bias
voltages. As described in [156], the DC voltages at the sam-
ple V = (VL,VR)T are related to the applied DC voltages
V0 = (V 0

L ,V 0
R )T and DC currents I0 = (I0

L, I0
R)T through the

relationship

V = V0 − R I0, (G11)

where R is a matrix containing the total resistances on the left,
right, and drain lines:

R =
(

RL + RD RD

RD RR + RD

)
. (G12)

For all the experimental data sets presented in this manuscript,
the average magnitude of these corrections is 1%–6% of the
applied bias voltages. For this reason, we do not apply these
corrections and present the data as a function of the applied
bias voltages, and not of the bias voltages at the sample.
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FIG. 36. Example cut of local (a) and nonlocal (b) conductance vs bias voltage for device A at B = 0. The zero-field bulk induced gap as
extracted from this data set is �ind ∼ 125 µeV, as estimated from the locations of the lowest-lying peak in the nonlocal data. This number is
consistent with �ind = 129 ± 12 µeV quoted in the main text (shown by vertical dashed lines), obtained by aggregating over several such bias
traces from device A.

For the purposes of induced gap estimation as in
Appendix H, full characterization of the measurement circuit
is not required since the relevant features are the presence of
conductance peaks and the DC voltage biases at the sample.
In this case, we apply a simpler correction procedure for finite
frequency effects consisting of rotation of the acquired signal
in the complex plane (typically a few degrees), projection
along the axis that maximizes signal to noise ratio, and sub-
traction of a small residual conductance offset (typically on
the order of 10−3e2/h).

APPENDIX H: SUBGAP DENSITY OF STATES
AT ZERO FIELD

We now discuss the subgap density of states measured
in device A at zero magnetic field. The presence of a finite
subgap conductance can be attributed to coupling to the lead,
temperature broadening, and/or the interfacial disorder, as
discussed in Ref. [105]. Indeed, the first generation of prox-
imitized nanowires [38] revealed a “soft” induced gap which
was primarily associated with disorder at the superconductor-
semiconductor interface. The local and nonlocal conductances
as a function of bias voltage for device A are shown in Fig. 36.
Note that in order to have large enough signal in the nonlo-
cal conductance, one needs to keep the junctions sufficiently
open. Data sets for both devices show well-defined coherence
peaks at the edge of the induced gap and a strong suppression
of the local conductance below the gap. The subgap nonlocal

conductances are below the noise floor of the measurement
and, thus, consistent with zero. The magnitude of the induced
gap as determined from the coherence peak location in the lo-
cal conductance agrees with the location of the lowest peak in
the nonlocal conductance, indicating that, for these bias cuts,
no subgap states were observed in the junction. In general,
subgap states may appear in the local spectroscopy, which
we interpret as localized bound states at the junction, likely
originating from the defects residing close to junction.

In order to understand the residual subgap density of states
observed in local spectroscopy, we can compare the measured
subgap suppression to the theory model described in [159].
The subgap suppression is consistently below the single-
channel limit, indicating that we have a “hard” proximitized
gap with multiple conduction channels at the junction. Indeed,
the above-gap conductance at the cutter and plunger values
was approximately 0.18 e2/h whereas the zero-bias conduc-
tance was comparable to the noise floor, which is estimated
to be 0.001 e2/h. This is consistent with having two or more
conduction channels in the lead.

Finally, we note that a better way to quantify the level of
disorder in our devices is by measuring the localization length
under the superconductor at finite B field, outlined in Ap-
pendix C. This measurement is more sensitive to disorder and
is easier to interpret than the zero-field local conductance mea-
surement. Nevertheless, the residual subgap conductance data
are consistent with having ultraclean proximitized nanowires
as discussed above.
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