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Fractional Jumps in Quantum
Hall Interferometer
A new experiment with fractional quantumHall states provides further
evidence that the states’ characteristic quasiparticles obey fractional
statistics.

By Steven H. Simon

P articles such as electrons and photons belong
to one of two camps, fermions or bosons, that differ in
their statistical behavior. However, in 1977, Jon Magne

Leinaas and Jan Myrheim postulated that particles confined to
two dimensions can have “fractional” statistics lying between
those of fermions and bosons [1]. Now an experiment by James
Nakamura and colleagues from Purdue University in Indiana
offers a direct measure of fractional statistics in a system long
predicted to harbor them: a thin strip of semiconductor
exhibiting the fractional quantum Hall effect (FQHE) [2].

Figure 1: The quantum Hall interferometer consists of a
two-dimensional material (blue) with a cavity structure (yellow) in
its center. When amagnetic field and a voltage are turned on,
currents (red lines) flow along the edge of the material. Reflections
at the entrances of the cavity lead to interference effects in the
measured conductance. For certain field and voltage values, the
interference pattern exhibits phase jumps because of the changes
in the number of quasiparticles (orange) inside the cavity.
Credit: APS/A. Stonebraker

Previous work by the same authors saw evidence of this
predicted behavior, but the new experiment probes an FQHE
state whose statistics are more unambiguously fractional. The
signal is still not as clear as onemight like, but the odds are that
further experimental refinements will give undeniable
confirmation of statistics beyond those of fermions and bosons.

The notion of fractional statistics can be understood by
imagining the swapping of two identical particles in a
counterclockwise direction on a two-dimensional (2D) surface.
At the end of such an exchange, the wave function accumulates
a phase eiθ , where θ defines the exchange statistics. For bosons
θ = 0, whereas for fermions θ = π. But other values of θ are
also possible, in which case we say that the statistics are
fractional. One place to look for fractional statistics is in
FQHE—a quantized conductance in 2Dmaterials exposed to a
magnetic field. Soon after the discovery of FQHE in 1986,
theorists predicted that the quasiparticle excitations of FQHE
states should have both fractional charge and fractional
statistics [3]. While the fractional charge of these exotic
particles was measured long ago (first in the 1990’s [4], and
many times since), the measurement of the fractional statistics
has provedmore elusive.

Just in the past few years, several new experiments have been
performed that have finally given fairly clear evidence of
fractional statistics [5–9]. The most direct, and potentially the
most conclusive, is the set of experiments by Nakamura and
colleagues [5, 6]. These experiments use a Fabry-Pérot
edge-state interferometer—a setup based on an earlier proposal
[10]. In this experiment, two constrictions are added to the
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Figure 2: The observed conductance in the quantum Hall
interferometer as the voltage andmagnetic field are varied. The
left side shows oscillations in the conductance values that arise
from interference between edgemodes traversing the
interferometer’s cavity. The right side shows phase jumps in the
conductance signal (dashed lines) that occur because of the
appearance of quasiparticles inside the cavity. This latter
phenomenon is used to measure θ, the fractional statistics angle.
Credit: J. Nakamura et al. [2]

surface of a 2Dmaterial in an FQHE state. These constrictions,
or “point contacts,” act like partially reflecting mirrors for the
FQHE edgemodes, which one can think of as currents of
quasiparticles moving around the border of the 2Dmaterial.
Together, the two point contacts form a cavity. When, for
example, a right-moving edgemode approaches this cavity, it is
split into two partial waves. One partial wave is immediately
reflected back to the left. The other partial wave encircles the
cavity and then interferes with the first partial wave (Fig. 1). The
researchers measure the conductance through the device as the
parameters of the experiment (gate voltage andmagnetic field)
are varied, and they observe an oscillation between
constructive and destructive interference.

The interference oscillations are simply a wave effect, but there
is a signature of fractional statistics within the oscillations. In a
certain region of parameter space, small changes of the
magnetic field or gate voltage can induce the appearance of one
extra quasiparticle in the middle of the cavity. The added
quasiparticle causes the mode running around the cavity to
accumulate an additional phase of e2iθ (corresponding to two
counterclockwise exchanges), which is thenmeasured as a
sudden change, or discrete phase jump, in the pattern of
interference oscillations (Fig. 2). Similar experiments had been

attemptedmany times but were previously confounded by the
effects of strong Coulomb interactions between the bulk and
the edge of the cavity. The crucial technical advance that made
these experiments possible was the development of
special-purpose high-mobility materials with nearby metallic
layers to screen the Coulomb interactions [5].

In the first generation of these experiments, Nakamura and
colleagues focused on the FQHE state at filling fraction ν = 1/3
[6]. The filling fraction, which is the ratio of the electron density
to the density of magnetic flux quanta, is controlled by tuning
the voltage andmagnetic field. The data in the ν = 1/3 case
looks delightfully clean. With precious little theoretical
interpretation, one can clearly see phase jumps of
approximately 2θ = 2π/3, which are exactly what one expects
when a single quasiparticle jumps into the middle of the cavity.
Further, as a cross-check, the researchers show small
corrections to the measured phase depending on the strength
of the Coulomb interaction, which agrees well with theory. This
verification gives one confidence that the experiment is actually
measuring fractional statistics as claimed.

However, the devil’s advocate might say that the phase jumps
in the ν = 1/3 case are not definitive proof of fractional
statistics. The reason for the uncertainty is that the fractional
charge is q = 1/3 · e = νe, and the fractional statistics phase
angle is 2θ = 2π/3 = 2πν. It’s possible, therefore, that the
sudden interference changes are tied in some roundabout way
to the filling factor or to the fractional charge and are not an
effect related to the exchange interaction.

To resolve this ambiguity, Nakamura and colleagues have now
performed an interferometer experiment at filling fraction
ν = 2/5 [2]. This is a more complicated FQHE state having two
edgemodes rather than just one. With careful placing of voltage
gates, the researchers were able to route edge states in such a
way that they could target the particular edgemodes that they
wanted to measure. Consequently, they succeeded in
extracting a fractional statistics angle of 2θ = −4π/5, as
expected. What makes this measurement especially interesting
is that this angle is not simply 2πν, which makes it far less likely
that the interference signal was a consequence of something
other than the fractional statistics.

While the results of this experiment are certainly not as crystal
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clear as the earlier experiments on ν = 1/3 [6], they still look
fairly good. Similar to the data at ν = 1/3, there are smooth
oscillations interrupted by discrete phase slips, presumably
from quasiparticles jumping into the cavity. The value of these
phase slips seems to match fairly well with the expectation.

As with any good experiment, wemay hope that nice results will
beget even nicer results. We can also hope that what we learn
from this experiment will lead to technology for doing even
more sophisticated experiments in the future, such as
interferometry of FQHE states with filling factor of ν = 5/2.
These states are harder to work with, but they might be useful
in possible topological quantum computers.

Steven H. Simon: Rudolf Peierls Centre for Theoretical Physics,
University of Oxford, Oxford, UK
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