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Sign reversal of the Josephson inductance 
magnetochiral anisotropy and 0–π-like 
transitions in supercurrent diodes
 

A. Costa    1,8, C. Baumgartner2,8, S. Reinhardt    2, J. Berger2, S. Gronin3, 
G. C. Gardner    3, T. Lindemann3,4, M. J. Manfra    3,4,5,6, J. Fabian    1, 
D. Kochan    1,7, N. Paradiso    2  & C. Strunk    2

The recent discovery of the intrinsic supercurrent diode effect, and 
its prompt observation in a rich variety of systems, has shown that 
non-reciprocal supercurrents naturally emerge when both space-inversion 
and time-inversion symmetries are broken. In Josephson junctions, 
non-reciprocal supercurrent can be conveniently described in terms 
of spin-split Andreev states. Here we demonstrate a sign reversal of the 
Josephson inductance magnetochiral anisotropy, a manifestation of the 
supercurrent diode effect. The asymmetry of the Josephson inductance 
as a function of the supercurrent allows us to probe the current–phase 
relation near equilibrium, and to probe jumps in the junction ground state. 
Using a minimal theoretical model, we can then link the sign reversal of the 
inductance magnetochiral anisotropy to the so-called 0−π-like transition, 
a predicted but still elusive feature of multichannel junctions. Our results 
demonstrate the potential of inductance measurements as sensitive probes 
of the fundamental properties of unconventional Josephson junctions.

Recent experiments1–11 have shown that it is possible to obtain 
non-reciprocal supercurrents by acting solely on the spin degree 
of freedom of a superconductor through Zeeman fields. Since 
then, supercurrent rectifiers—called superconducting diodes—
have generated keen interest due to their potential applications in 
dissipation-free electronics. From a fundamental point of view, the 
superconducting diode effect proved to be an important probe of 
symmetry breaking in novel and exotic superconducting systems, 
such as magic-angle twisted bilayer12 or trilayer13,14 graphene, as well 
as proximitized topological insulators6,15,16.

The spin–orbit interaction (SOI) is the key ingredient to obtain 
supercurrent non-reciprocity through a Zeeman coupling, as first dem-
onstrated for both bulk superconductors and Josephson junctions2,3. 

The phenomenology in both cases is similar: supercurrent rectifica-
tion is induced by a Zeeman splitting of electron states with opposite 
momenta, which can happen in systems with spin–momentum locking 
due to the underlying SOI.

To date, theoretical models use different approaches to describe 
the supercurrent diode effect (SDE) in bulk superconductors and 
Josephson junctions. In the former case, non-reciprocity is usually 
attributed to the emergence of a helical phase17–22, that is, to the finite 
Cooper-pair momentum that results from the SOI-split Fermi surface 
shifted due to Zeeman coupling. Instead, non-reciprocal supercurrent 
in superconducting–normal–superconducting (S–N–S) Josephson 
junctions is more conveniently described in terms of Andreev bound 
states23–25 that, in the presence of Zeeman coupling and SOI, modify the 
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1 and ̄τ = 0.93 for sample 3. The array inductance is deduced from the 
resonance frequency shift of a resistor-inductor-capacitor (RLC) cir-
cuit, whose inductor is given by a Cu coil in series with the sample to 
be measured2,44 (Methods).

In our theoretical model, a short, 2D S–N–S junction consists of 
two semi-infinite Rashba s-wave superconductors (S) phase-coherently 
coupled by a short non-superconducting (or normal; N) link (Fig. 1a, 
bottom). For simplicity, we consider the short-junction limit, which 
captures the Zeeman coupling due to the applied in-plane magnetic 
field and additionally introduces a small tunnelling potential to account 
for the non-perfect transparency of the junction. The Zeeman coupling 
is parameterized by λZ = 2mVZd/(ħ2kF), with the Zeeman potential VZ, 
the effective electron mass m, the weak link thickness d, the 2DEG 
Fermi wave vector kF and the reduced Planck’s constant ħ (Methods). 
Magnetic field effects inside the bulk of the S regions (in particular 
the suppression of the proximity-induced superconducting gap with 
increasing magnetic field) are neglected.

Coherent Cooper-pair tunnelling through the S–N–S junction is 
mediated by Andreev bound states that are localized around the N link 
(Fig. 1a, bottom). To determine their energies and wavefunctions, we 
solve the stationary Bogoliubov–de Gennes equation45. From the 
Andreev spectrum we obtain the phase-asymmetric CPR, I(φ), and 
consequently all the relevant quantities to be compared with the experi-
mental data, namely, the polarity-dependent critical currents I+c  and 
I−c , and the Josephson inductance

L(I) = ℏ
2e

dφ(I)
dI

, (1)

where e is the (positive) elementary charge.
Figure 1b illustrates the Josephson energy–phase relations, EJ(φ), 

evaluated from our theoretical model for different values of the Zee-
man parameter λZ ∈ [0.5, 2.5]. Note that the energy–phase relation in 
a multichannel system is given by EJ(φ) = Σiεi(φ), where the sum runs 
over the individual transverse channels (i) with Andreev state energies 
εi. Our inductance measurements always probe the system in the vicin-
ity of the global minimum of EJ(φ), which is the experimental working 
point. Since the φ value at which EJ(φ) is minimal is simultaneously a 
zero of I(φ), such a phase, by definition, corresponds to the anomalous 
phase shift φ0.

The main results of our analytical calculations (Fig. 1b) are that (1) 
EJ(φ) features, at sufficiently high Zeeman fields λZ, two minima—one 
global and one local; and (2) when increasing λZ, the lower (global) mini-
mum increases in energy, while the upper (local) minimum decreases, 
until a degeneracy point is reached where the system switches from one 
minimum (that is, from one anomalous phase φ0,1) to the other (φ0,2). 
In Fig. 1b, this transition occurs for λZ = 1.94 (black curve). Unlike for 
conventional 0–π transitions46–50, the phase difference Δφ ≡ ∣φ0,1 − φ0,2∣ 
is appreciably less than π, owing to the anomalous phase shift φ0. As 
discussed below, one experimental signature of this transition is the 
reversal of the inductance MCA.

Results and interpretation
Figure 2a shows our main experimental results, namely the in-plane 
field-induced reversal of the inductance MCA. In the graph, we report 
the Josephson inductance L as a function of the d.c. current I for dif-
ferent values of the in-plane magnetic field By, measured on sample 
3. At moderate fields (By < 200 mT), the L(I) curves are asymmetric 
around zero bias, with a minimum occurring at current i* < 0, which 
corresponds to the inflection point of the CPR2,44. These minima are 
indicated by the open triangles in Fig. 2a.

Our central observation is the fact that at higher fields 
(By > 200 mT), the sign of i* is inverted. By Taylor expansion of the L(I) 
curves to the first order in I, we get two coefficients, that is, L0 ≡ L(0) 
and L′0 ≡ ∂IL(0), that as functions of the magnetic field serve as figures 

current–phase relation (CPR) endowing it with an anomalous phase 
shift φ0, with φ0 ≠ 0, π (refs. 26–43). Such a phase shift leads to a marked 
asymmetry of the CPR, that is, I(−φ) ≠ −I(φ), where I is current. In the 
simplest case, the magnitude of φ0 depends on the products of SOI and 
Zeeman coupling strengths, and on the inverse of the squared veloc-
ity of the impinging electrons (or holes)28. Since the latter is different 
for each transverse channel in the junction, the CPRs of individual 
channels acquire different φ0 shifts (discussion in the Supplementary 
Information). The last ingredient necessary to obtain the diode effect 
is a skewed CPR, that is, a CPR with higher harmonics, as those observed 
in short-ballistic junctions. This requirement arises from the fact that 
the sum of different (also shifted) sine functions is still sinusoidal, and 
hence positive and negative critical currents have the same absolute 
value. Instead, the sum of skewed CPRs with different φ0 shifts produces 
a distortion of the total CPR that breaks the symmetry between its posi-
tive and negative branches. We shall refer to the resulting difference 
between the positive and negative critical currents as the d.c. SDE. 
The asymmetry between positive and negative branches of the CPR 
also implies that its inflection point shifts to finite current i*. Such an 
inflection point current corresponds to the minimum of the Joseph-
son inductance L measured as a function of the current I. The finite 
i* renders L(I) asymmetric around I = 0, reflecting the magnetochiral 
anisotropy in the Josephson inductance2. Thus, the impedance for 
small a.c. signals will depend on the polarity of I, an effect that can be 
seen as the a.c. counterpart of the d.c. SDE.

In this work we demonstrate that large Rashba SOI together with 
a Zeeman field gives rise to a sign reversal of the inductance magne-
tochiral anisotropy (MCA) in ballistic multichannel Josephson junc-
tions. We theoretically show that all experimental observations can be 
unambiguously explained by a minimal model linking the supercurrent 
flow to the underlying short-junction Andreev bound states. We dem-
onstrate that the reversal of the inductance MCA naturally emerges as a 
consequence of the so-called 0–π-like transition, where the Josephson 
junction switches between two distinct minima of the correspond-
ing energy–phase relation. Such transitions were predicted nearly  
a decade ago37, but, to the best of our knowledge, not yet observed  
in experiments.

In our experiments we also observe that the d.c. SDE sharply peaks 
as a function of the in-plane magnetic field at a certain field value, and 
then it becomes rapidly suppressed at higher field values. With the 
help of our theoretical model, we can unambiguously explain both 
the reversal of the inductance MCA and the abrupt suppression of the 
d.c. SDE in terms of the intricate shape of the CPR in Rashba Josephson 
junctions under large in-plane fields.

Device and model description
We briefly describe our experiment, which is discussed in detail in the 
Methods as well as in our previous studies2,44. The starting point is a 
heterostructure featuring a very shallow InAs/InGaAs quantum well, 
hosting a two-dimensional electron gas (2DEG) with a large Rashba 
SOI. The heterostructure is capped by a 7-nm-thick epitaxial layer of 
Al, which induces superconductivity in the 2DEG by the proximity 
effect. By deep-etching, we define a mesa with a width of 3.15 μm for 
sample 1 and 3.27 μm for sample 3. By electron-beam lithography, we 
then selectively etch the Al film so that a gap of 100 nm is left between 
the adjacent pristine Al islands. We define an array of 2,250 islands, 
with a periodicity of 1.1 μm (refs. 2,44). In the top part of Fig. 1a, we 
sketch our device, showing only a few junctions for clarity. The reason 
why we work with long arrays and not with single junctions is merely 
technical and is discussed in the Supplementary Information. The 
2DEG in the gap regions acts as a ballistic normal weak link connecting 
the superconducting 2DEG portions, in which the Al film induces a 
sizable gap Δ* = 130 μeV, that is, approximately 60% of that of the epi-
taxial Al (ref. 44). The transparency of our junctions is typically very 
high44, with average transmission coefficients of ̄τ = 0.94 for sample 
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Fig. 1 | Multichannel Rashba Josephson junctions: experiment and theory.  
a, Sketch of the device, consisting of a one-dimensional (1D) Josephson junction 
array in series with an LC circuit (top). The external inductor has inductance Le, 
while the external capacitor has conductance Ce. The superconducting regions 
consist of a 2DEG (yellow) proximitized by epitaxially grown Al islands 
(turquoise); they are connected through 2DEG weak links that are indicated by 
the gaps between the Al islands, as described in the main text. The theoretical 
model on the bottom shows that the two 2D Rashba superconductors 
(turquoise), described by the Hamiltonians ℋ̂S,1 and ℋ̂S,2, are connected by a 

delta-like N link (yellow) described by the Hamiltonian ℋ̂N (Methods). The 
Andreev bound-state wavefunction ΨABS (black lines show its absolute square) is 
strongly localized around the barrier. b, Computed Josephson energy as a 
function of the phase difference φ for various indicated Zeeman parameters λZ,  
as described in the text. Arrows indicate the positions of the two relevant energy 
minima, φ0,2 and φ0,1, which become degenerate at λZ = 1.94 (thick black curve) 
when the 0–π-like transition occurs. c, Computed current–phase relations for 
the Zeeman parameters considered in b; the current is normalized to the critical 
current at zero magnetic field, Ic,0 ≡ Ic(λZ = 0).
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Fig. 2 | Reversal of the inductance MCA at the 0–π-like transition. a, Josephson 
inductance L(I) for the array of sample 3, measured at temperature T = 100 mK as 
a function of the d.c. current I and for different values of the in-plane field 
component By perpendicular to the current. The open triangles indicate the 
current i*, that is, the minimum of L(I), as described in the text. b, Constant term 

L0 of the polynomial expansion of L(I), plotted versus By. c, Linear coefficient L′0 of 
the polynomial expansion of L(I), plotted versus By. Red (blue) symbols refer to 
sample 3 (sample 1). d, L0 as computed from our theoretical model as a function 
of the phenomenological Zeeman parameter λZ. e, L′0 as computed from our 
theoretical model as a function of λZ.
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of merit of the inductance MCA2. In Fig. 2b,c, we show the By-field 
dependence of L0 and L′0, respectively, for sample 3 (red symbols, cor-
responding to the data in Fig. 2a) and sample 1 (blue symbols). We 
notice that (1) the L0(By) curves feature a plateau at about 180 mT, cor-
responding to the accumulation of the L(I) curves in Fig. 2a; (2) L′0 shows 
a nearly linear increase at low By fields followed by an upturn for 
By > 100 mT, with a peak at about 180 mT; and finally, (3) a dramatic 
drop with sign change occurs at By = 220 mT, reflecting the sign change 
of i* in Fig. 2a, which is our main experimental finding.

Figure 2d,e shows the corresponding results of our theoretical 
calculations for L0(λZ) and L′0(λZ), respectively, as functions of λZ. 
Although our theoretical model treats the Zeeman coupling at the 
phenomenological level (through the single tunable parameter λZ), all 
relevant experimental observations from (1) to (3) are qualitatively 
reproduced. In particular, the plateau for L0 and the L′0 peak followed 
by a sudden sign change are visible near λZ = 2 in Fig. 2d,e, respectively. 
In our calculations, both effects reflect the 0–π-like transition, where 
the anomalous phase switches from φ0,1 to φ0,2 (Fig. 1c). In the vicinity 
of φ0,1 and φ0,2, the sign of the CPR curvature (that is, d2I/dφ2) differs 
(Fig. 3e–g). Correspondingly, the sign of L′0 ∝ d2φ/dI2 in the measure-
ments changes as well.

Complementary to the inductance MCA is the d.c. SDE, that is, the 
polarity-dependent critical current. Figure 3a shows the By dependence 
of the critical current measured on sample 1 for the two bias polarities, 
namely, I+c  and |I−c |. We observe an evident critical current asymmetry, 

that is, a pronounced d.c. SDE. This can be better seen in Fig. 3b, where 
we plot the difference ΔIc ≡ I+c − |I−c |. The main features of this graph 
are the nearly linear By dependence of ΔIc up to 75 mT followed by a 
slope discontinuity and a sharp suppression of the rectification at 
higher values. Also, we notice a weak shoulder, barely visible near zero 
field (light green arrow in Fig. 3b,d). These characteristics of ΔIc were 
already reported in the literature2. In the inset of Fig. 3b, we show a 
zoomed-in view of the ΔIc(By) curve. We observe that ΔIc converges to 
a finite value of −5 nA at high fields—for both By > 0 and By < 0—which 
we attribute to an instrumental offset. After subtracting this offset, we 
see that the graph of ΔIc is point-symmetric around the origin, and it 
changes sign at ∣By∣ ≈ 400 mT, before approaching zero. Such a sign 
change of the d.c. SDE is very weak, at the limit of the experimental 
visibility for the given data-point scatter, as opposed to the strong 
inversion of L′0 in Fig. 2c. It appears natural to ask what is the relation 
between the slope discontinuity of the d.c. SDE and the reversal of the 
inductance MCA displayed in Fig. 2.

The results of our analytical calculations help to clarify the origin 
of the slope discontinuity at By = 75 mT (−75 mT) for |I−c | ( I+c ; Fig. 3a). 
Figure 3c presents the computed critical current for positive (I+c ) and 
negative (|I−c |) bias as a function of the Zeeman parameter λZ, while  
Fig. 3d shows their respective difference ΔIc. In both cases, the values 
are normalized to the critical current at λZ = 0. Despite its simplicity, 
the minimal model describes the main features of the experimental 
d.c. SDE, including the weak shoulder near By = 0. The computed ΔIc 
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reaches a maximum at λZ ≈ 1.61 (marked by the orange arrows in  
Fig. 3c,d) and experiences a discontinuous change in its slope that is 
followed by a steep descent to negative values. The slope of ΔIc changes 
again at λZ ≈ 2.31 (marked by the purple arrows in Fig. 3c,d), where the 
supercurrent rectification reaches its opposite maximum, before it 
eventually converges to zero at higher fields.

For an intuitive picture of the physical mechanism leading to the 
reversal of the d.c. SDE and inductance MCA, we need to look at the 
CPR in a large Zeeman field. In Fig. 3e, with the black curve, we display 
the computed CPR for λZ = 1.94, which corresponds to the 0–π-like 
transition. As discussed above (Fig. 1b,c), the unbiased system switches 
from the working point φ0,1 to φ0,2 at that value. For low current bias (as 
is the case for the inductance MCA experiments), the CPR probed near 
φ0,1 is very different from that measured near φ0,2, as shown in the 
zoomed-in graphs displayed in Fig. 3g,f, respectively. Both portions of 
the CPR are strongly asymmetric, but the magnitude and sign of the 
asymmetry are different. For instance, to reach the minimum of the 
L(I) curve (namely, the inflection point i* of the CPR), one needs to apply 
a positive current bias near φ0,1 (Fig. 3g, green dot), whereas the bias 
must be negative to reach the inflection point near φ0,2, that is, after 
the 0–π-like transition (Fig. 3f). In other words, the second derivatives 
(that is, the curvature) of the CPR in φ0,1 and φ0,2 have opposite signs. 
As a consequence, the computed L′0 ∝ d2φ/dI2 must have a discontinu-
ity at the 0–π-like transition, as observed in Fig. 2e.

As with the Josephson inductance MCA reversal, the sign change 
of the d.c. SDE originates from the complex shape of the CPR, which 
features two maxima and two minima at high in-plane fields. However, 
the experimental signature of the d.c. SDE sign change (i.e., the slope 
discontinuity for ∆Ic) does not occur exactly at the 0–π-like transition, 
that is, when the two minima of EJ(φ) become degenerate. Instead, the 
d.c. SDE reversal is caused by the degeneracy of absolute maxima or 
minima of the CPR, as explained in the following. At small By fields, both 
the absolute maximum I+c  and the absolute minimum |I−c | decrease with 
By, but the latter decreases faster (compare Figs. 1c and 3c), so that the 
difference ΔIc increases with a nearly constant slope with By (compare 
Fig. 3a,c). At the in-plane field By corresponding to Zeeman coupling 
λZ = 1.61 (grey curve in Fig. 3e, below the 0–π-like transition), the two 
minima become degenerate. Eventually, for higher fields, I−c  is deter-
mined by the new minimum (the one on the left in Fig. 3e, magenta 
arrow). The absolute value of this latter minimum decreases much 
more slowly with λZ, so that |I−c | (and consequently ΔIc) displays a slope 
discontinuity at λZ = 1.61 (orange arrow in Fig. 3c). For λZ > 1.61, I+c  
decreases faster than |I−c |, until for λZ = 2.14 the two curves cross, that 
is, ΔIc changes sign. In our model, we observe another slope discontinu-
ity for λZ = 2.31 (purple arrow in Fig. 3c), corresponding to the degen-
eracy of two CPR maxima, which induces a negative peak in ΔIc, followed 
by its suppression (Fig. 3d). In the experiment, owing to orbital pair 
breaking at high fields (ignored in the model), the visibility of such a 
negative peak is largely reduced (compare Fig. 3b,d). It is clear from 
our arguments that the sign reversal of ΔIc is not directly related to the 
0–π-like transition, although both phenomena originate from the 
complex character of the CPR in multichannel junctions. Our results 
might explain the often reported observation2,3,7,8,51 of a sharp suppres-
sion of the d.c. SDE above a certain threshold field.

Discussion
Our findings demonstrate the importance of inductance experiments 
to extract information that is completely inaccessible in d.c. measure-
ments. As opposed to the critical current, the inductance is a linear 
response observable that is accessible in the regime of small excita-
tion, limited only by sensitivity. It is precisely this ability to probe the 
system near zero bias that allows us to reveal the 0–π-like transition 
by inductance measurements. Instead, under large d.c. bias, the criti-
cal current is determined by the absolute maximum (or minimum) 
of the CPR, and not by relative minima of the energy–phase relation,  

i.e, the working points. For this reason, 0–π-like transitions can hardly 
be observed in d.c. experiments on single junctions. Our theoretical 
calculations suggest that the reversal of the inductance MCA is much 
more pronounced than that of the d.c. SDE, precisely as observed in our 
experiments, emphasizing the great sensitivity of inductance measure-
ments to probe the non-reciprocal supercurrent in Josephson junctions.

It is important to mention that experiments on NiTe2 junctions6 
have shown multiple oscillations of the d.c. SDE, with ΔIc appearing as a 
damped sine function of the in-plane field. By contrast, our experimen-
tal data, as well as experiments in the literature8,51, are not compatible 
with a (damped) sinusoidal dependence: the cusp-like change of the ΔIc 
slope at By = 75 mT in our experiment can certainly not be reproduced 
by a damped sine.

Finally, we would like to stress that asymmetric vortex barriers, 
which have recently been invoked to explain supercurrent rectification 
effects in plain superconducting films52,53, as well as in epitaxial Al/InAs 
bilayers54, do not seem to play any important role in our experiments, 
where both the critical current and inductance are completely deter-
mined by only the Josephson junction properties.

Conclusions
In conclusion, we experimentally demonstrate a sign change of the 
inductance MCA in ballistic Josephson junctions with a large Rashba 
SOI. Based on a minimal theoretical model, we show that this effect 
provides an experimental signature of 0–π-like transitions in the CPR. 
The model predicts a slope discontinuity in the critical current differ-
ence versus in-plane field, followed eventually by a sign change of the 
d.c. diode effect. The former effect is clearly visible in the experiment, 
while the latter is below the limit of visibility. The phenomena studied 
here originate from the distinct spectral properties of the Andreev 
bound states corresponding to different transverse channels. The 
sum of their contribution gives rise to a complex Josephson energy 
landscape, resulting from the different anomalous φ0 shifts for the 
individual transverse channels.

Supercurrent non-reciprocity is a valuable probe of the physics of 
Josepshon junctions in systems with broken inversion and time-reversal 
symmetries. As proposed in a recent work55, the SDE can be used to 
detect topological phase transitions in a way that is protected from 
parity-altering events such as quasiparticle poisoning.

From a technological perspective, supercurrent diodes are prom-
ising building blocks for fully superconducting electronics for quan-
tum computing applications. In fact, a non-zero L′0 is a key element56 
of recently proposed non-reciprocal radiofrequency devices57. Until 
now, a finite effective L′0 could only be engineered via complex super-
conducting quantum interference devices (SQUIDs)58. Here we show 
that it is instead a robust feature of single Rashba Josephson 
junctions.

We note that during the review process, we became aware of two 
related works59,60 investigating the same type of junctions studied here, 
which appeared after the submission of the present manuscript. One 
study59 reports asymmetric Andreev spectra measured in the same 
type of junction we studied. The other60 relates the reversal of the d.c. 
SDE to the length of the superconducting leads, which might explain 
the weakness of the d.c. SDE reversal we measured.
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Methods
Experimental details
Samples are fabricated starting from a semiconductor/metal het-
erostructure grown by molecular-beam epitaxy. The topmost layer  
(Al, 7 nm) is separated by a quantum well (In0.81Ga0.19As, 4 nm; InAs, 
7 nm; In0.80Ga0.20As, 10 nm) by two monolayers of GaAs. The quantum 
well hosts a 2DEG with density n = 5 × 1011 cm−2 and mobility of approxi-
mately μ = 2.2 × 104 cm2 V–1 s–1. The Josephson junction array is defined 
on a mesa structure, fabricated via electron-beam lithography followed 
by a wet-etching step. Then, to obtain the weak links, we remove the 
topmost Al layer by electron-beam lithography followed by highly 
selective Al wet-etching. The selectivity of the etching is crucial to 
obtain ballistic junctions with high transparency. Further details about 
the sample structure and fabrication are provided in ref. 44.

To measure both the inductance and d.c. transport characteristics, 
we embed the sample under study in a circuit featuring an RLC resonator 
in series with the sample. The circuit is mounted on the sample holder 
thermally anchored to the cold finger of a dilution refrigerator. Four 
leads make possible d.c. transport measurements in a four-terminal 
configuration. The four leads are connected to the cryostat lines via 
1 kΩ decoupling resistors. The inductance and capacitance of the RLC 
resonator are Le = 382 nH and Ce = 4 nF, respectively. The resonance 
frequency for negligible contribution from the sample is, therefore, 
f0 = 4 MHz. The inductance of the sample is deduced from the reduc-
tion of the resonance frequency with respect to f0. More details on the 
circuit can be found in the Supplementary Information and in ref. 44.

Details of the theoretical model
Our minimal theoretical model allows us to relate the supercurrent of a 
short-ballistic multichannel Josephson junction with the spectral prop-
erties of the associated Andreev bound states. Based on these proper-
ties, we explain the experimentally observed d.c. SDE and inductance 
MCA. Assuming that all 2,250 junctions within the array are identical, we 
focus on one single S–N–S junction, and extract its Josephson CPR, its 
Josephson energy and thus the Josephson inductance—the inductance 
of the whole array is just a multiple of 2,250 of the latter.

We model the short S–N–S junction as two semi-infinite super-
conducting (S) leads that are phase-coherently coupled by a delta-like 
normal (N) link (Fig. 1, bottom). The coherent transport of Cooper pairs 
through the junction is mediated by Andreev bound states, whose 
energies and wavefunctions are obtained by solving the stationary 
2D Bogoliubov–de Gennes equation45 with eigenfunction Ψ(x,y) and 
eigenvalue E

[
ℋ̂ ∆̂(x)

∆̂
†(x) −σ̂y(ℋ̂)∗σ̂y

]Ψ (x, y) = EΨ (x, y), (2)

where the single-electron Hamiltonian reads as

ℋ̂ = ℋ̂S,1 Θ(−x) + ℋ̂S,2 Θ(x) + ℋ̂N δ(x), (3)

with

ℋ̂S,1/2 = [− ℏ2
2m ( ∂2

∂x2
+ ∂2

∂y2 )
− μ] σ̂0 + α (kyσ̂x − kxσ̂y) (4)

and

ℋ̂N = (V0 σ̂0 + VZ σ̂y)d. (5)

In the above expressions, ∆̂(x) is the pairing potential, δ(x) and 
Θ(x) are the Dirac and the Heaviside function, α parameterizes the 
Rashba SOI that is present throughout the whole junction, kx (ky) is the 
wavevector along the x (y) direction and VZ and V0 stand for the heights 

of the Zeeman and scalar (spin-independent) potentials that are spread-
ing over the full width of the N weak link with effective length d. While 
VZ takes care about the in-plane magnetic field (aligned along the  
̂y  axis) that couples to spin via the Zeeman coupling, the reason to 

introduce V0 is merely to capture a reduced transparency of the N link, 
caused, for example, by different electronic densities in the proxim-
itized S and N regions61. Moreover, m denotes the effective (quasipar-
ticle) mass; μ = ℏ2k2F/(2m), the Fermi energy; σ̂0, the 2 × 2 identity matrix; 
and σ̂x  and σ̂y stand for the Pauli matrices.

The s-wave superconducting pairing potential (induced by the 
epitaxially grown Al layer) can be written as

∆̂(x) = ∆
∗ [Θ(−x) + eiφΘ(x)] , (6)

where i is the imaginary unit, Δ* is the proximity-induced supercon-
ducting gap and φ is the superconducting phase difference along  
the junction.

To find the Andreev bound states, we (1) start with the most general 
ansatz for the in-gap (bound-state) wavefunctions in the superconduc-
tors, (2) then eliminate all unknown amplitudes that enter this ansatz 
by applying appropriate boundary conditions that should be satisfied 
at the N interface and (3) request the final system of algebraic equations 
to have a non-trivial solution to get a secular equation. We solve the 
latter obtaining the Andreev bound-state energies, and subsequently 
also the unknown amplitudes, which gives us the bound-state wave-
functions in real space. Having the wavefunctions, we compute the 
expectation values of the current operator in the N region, which is 
equal to the Josephson current due to charge conservation—so the 
Cooper-pair tunnelling is mediated by the available Andreev bound 
states. Varying the superconducting phase difference φ, we finally 
recover the Josephson CPR I(φ), the direction-dependent critical cur-
rents I+c  and I−c  and the Josephson inductance

L(I) = ℏ
2e

dφ(I )
dI

, (7)

which we compare with the experimental data; e refers to the (positive) 
elementary charge.

To shorten the notation, we define the dimensionless parameters 
λSOI = mα/(ħ2kF), Z = 2mV0d/(ħ2kF) and λZ = 2mVZd/(ħ2kF) to quantify the 
Rashba SOI, the strength of the (scalar) barrier and the strength of the 
Zeeman coupling, respectively. In agreement with our earlier experi-
mental findings44, we set Z = 0.5 in all calculations, which corresponds 
to a junction transparency62 of ̄τ = 1/[1 + (Z/2)2] ≈ 0.94 , whereas the 
Rashba SOI λSOI = 0.661 was adapted such that varying the phenomeno-
logical Zeeman parameter λZ reproduces at best the qualitative mag-
netic field dependence of the experimental data.

Although our minimal model includes the Zeeman coupling only 
in a delta-like manner, we can still exploit the formal analogy with a 
realistic Zeeman Hamiltonian to convert λZ into a plausible value for the 
experimental magnetic field. Substituting the formula for the Zeeman 
gap, VZ = ∣g*∣μBBy/2, where2 ∣g*∣ ≈ 10 and μB denotes the Bohr magneton, 
into the above definition of λZ, the corresponding magnetic field is  
By = [ħ2kF/(m∣g*∣μBd)] × λZ. For a typical Fermi wave vector of 
kF ≈ 3 × 108 m−1 and N link length of d = 100 nm, the 0–π-like transi-
tion point at λZ ≈ 2 in our model refers then to a magnetic field of 
By ≈ 800 mT. This estimate also agrees reasonably well with the transi-
tion field observed in the literature63. What matters to map theory and 
experiment is the elevated ratio of SOI strength to Fermi level, which 
in our case reads αkF/μ = 2λSOI ≈ 1.2.

In the experiment, the 0–π-like transition occurs already at a sub-
stantially smaller magnetic field of about 200 mT (Fig. 2c). The reason 
for this quantitative discrepancy between experiment and theory is 
most likely the neglect of gap-suppression effects inside the supercon-
ducting regions in our theory, as well as the too coarse approximation 
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of the N link by means of a simple delta function. Extracting the field 
dependence of the proximity-induced superconducting gap, Δ*(By), 
from the experimental inductance data indeed confirms that the 
gap becomes substantially suppressed and the Zeeman energy can 
already overcome the superconducting gap at about 200 mT. As a 
consequence, the superconducting gap essentially closes for one spin 
channel, and the junction undergoes the 0–π-like transition.

Data availability
The data that support the findings of this study are available at the 
online depository EPUB of the University of Regensburg, with the 
identifier https://doi.org/10.5283/epub.53466. Source data are pro-
vided with this paper.

Code availability
The computer codes that support the theoretical results, the plots 
within this paper and other findings of this study are available from 
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